
pymem Documentation
Release alpha

Author

Dec 29, 2020

Contents

1 User’s Guide 3

2 API Reference 15

3 Additional Notes 17

Python Module Index 21

Index 23

i

ii

pymem Documentation, Release alpha

Welcome to Pymem’s documentation. Get started with Installation and then get an overview with the Quickstart.
There is also a more detailed Tutorials section that shows how to write small software with Pymem. The rest of the
docs describe each component of Pymem in detail, with a full reference in the API section.

Except for running tests or buliding the documentation, Pymem does not require any library it only manipulate ctypes
and more precisely WinDLL.

The structure of this documentation is based on Flask.

Contents 1

https://docs.python.org/3.6/library/ctypes.html
https://docs.python.org/3.6/library/ctypes.html?highlight=ctypes%20windll#ctypes.WinDLL
https://flask.palletsprojects.com/

pymem Documentation, Release alpha

2 Contents

CHAPTER 1

User’s Guide

This part of the documentation, which is mostly prose, begins with some background information about Pymem, then
focuses on step-by-step instructions for reversing with Pymem.

1.1 Foreword

Read this before you get started with Pymem. This hopefully answers some questions about the purpose and goals of
the project, and then why you should and should not be using it.

1.1.1 Why Pymem ?

I decided to build pymem after some reading of the wonderfull book Gray Hat Python by Justin Seitz, which I rec-
ommend as a first reading before even starting using Pymem. The book covers the win32api and important aspects of
debuggers. As I wanted to learn more on debugging, hooking and the windows API, I figured out that writing a library
was the perfect project.

1.1.2 Pymem history

So back in 2010, with my little knowledge of Python I wrote the first version of this library (which has been entirely
rewritten since). I figured out that most of the resources you can find covering C, C++, C# of the windows API works
“as it” using python ctypes without any effort, so I decided to wrap some of them into Pymem.

In 2015, I decided to rebirth the library, and to rewrite it using python3. The library is a toolbox for process memory
manipulations, it supports memory reads, writes and even assembly injection (thanks to pyfasm).

In 2020, the support for pyfasm was dropped because of its incompatibility with x64 processes. It now includes testing,
and the documentation as been totally rewritten with tutorials.

3

https://nostarch.com/ghpython.htm
https://docs.python.org/3.6/library/ctypes.html
https://github.com/srounet/pyfasm

pymem Documentation, Release alpha

1.1.3 Why and when using Pymem

Pymem has been built to reverse games such as Worlf of Warcraft, so if you plan to write a bot for this kind of game,
you’re in the right place. You can also use pymem to do injections, assembly, memory pattern search and a lot more.

You should head over the Tutorials section and see what Pymem is capable of!

Continue to Installation, the Quickstart or Tutorials.

1.2 Installation

Pymem has no dependencies and works on both x86 and x64 architecture.

You will need Python 3 or newer to get started, so be sure to have an up-to-date Python 3.x installation.

If you are familiar with pyenv, it is highly recommended to sandbox pymem installation within a custom virtualenv.

1.2.1 Path

In order to use all pymem fonctionalities you have to first make sure that system python directory is configured within
windows system PATH.

In a PowerShell window type:

$env:PATH

This PATH should contain the directory where python is installed system wide or at least have access to pythonXX.dll
If you don’t find python in your PATH, then it is recommended to add it.

- Open the Start Search, type in "env", and choose "Edit the system environment
→˓variables"
- Click the "Environment Variables..." button
- Under the "System Variables" section (the lower half), find the row with "Path" in
→˓the first column, and click edit.
- The "Edit environment variable" UI will appear. Here, you can click "New" and type
→˓in the new path you want to add.
- Add your python path and close the windows (something like:
→˓C:\Users\xxx\AppData\Local\Programs\Python\Python38)

1.2.2 Virtual environments

Use a virtual environment to manage the dependencies for your project, both in development and in production.

What problem does a virtual environment solve? The more Python projects you have, the more likely it is that you
need to work with different versions of Python libraries, or even Python itself. Newer versions of libraries for one
project can break compatibility in another project.

Virtual environments are independent groups of Python libraries, one for each project. Packages installed for one
project will not affect other projects or the operating system’s packages.

Python comes bundled with the venv module to create virtual environments.

4 Chapter 1. User’s Guide

https://github.com/pyenv/pyenv

pymem Documentation, Release alpha

Create an environment

Create a project folder and a venv folder within:

$ mkdir myproject
$ cd myproject
$ python3 -m venv venv

On Windows:

$ py -3 -m venv venv

Activate the environment

Before you work on your project, activate the corresponding environment:

$. venv/bin/activate

On Windows:

> venv\Scripts\activate

Your shell prompt will change to show the name of the activated environment.

1.2.3 Install Pymem

Within the activated environment, use the following command to install Pymem:

$ pip install pymem

Pymem is now installed. Check out the Quickstart or go to the Documentation Overview.

1.3 Quickstart

Eager to get started? This page gives a good introduction to Pymem. Follow Installation to set up a project and install
Pymem first.

1.3.1 A Minimal Application

A minimal Pymem application looks something like this:

from pymem import Pymem

pm = Pymem('notepad.exe')
print('Process id: %s' % pm.process_id)
address = pm.allocate(10)
print('Allocated address: %s' % address)
pm.write_int(address, 1337)
value = pm.read_int(address)
print('Allocated value: %s' % value)
pm.free(address)

1.3. Quickstart 5

pymem Documentation, Release alpha

So what did that code do?

1. First we imported the Pymem class. An instance of this class will be our win32api wrapper

2. Next we create an instance of this class. The first argument is the name of the windows process we want to hook
into.

Be aware that after creating an instance of Pymem with the process name as an argument, the process will be
opened with debug mode flags.

3. We then allocate 10 bytes into given _notepad.exe_ process with allocate().

4. For the example we then write an integer with write_int() and read it with read_int().

5. We then free memory from the current opened process at the given address with free().

Save it as hello.py or something similar. Make sure to not call your application pymem.py because this would
conflict with Pymem itself.

To run the application, first start notepad.exe be sure to have pymem installed within your current python environment
and simply execute your script.

$ python hello.py
Process id: 2345
Allocated address: 123456789
Allocated value: 1337

1.4 Tutorials

1.4.1 Listing process modules

Pymem comes with somes process utilities like listing loaded modules.

Here is a snippet that will list loaded process modules

import pymem

pm = pymem.Pymem('python.exe')
modules = list(pm.list_modules())
for module in modules:

print(module.name)

So what did that code do?

1. we hook pymem with python.exe process

2. we retrieve the list of loaded modules

3. for every module listed, we display its name

note: every module is an instance of MODULEINFO()

1.4.2 Injecting a python interpreter into any process

Pymem allow you to inject python.dll into a target process and then map py_run_simple_string with a single call to
inject_python_interpreter().

6 Chapter 1. User’s Guide

pymem Documentation, Release alpha

from pymem import Pymem

notepad = subprocess.Popen(['notepad.exe'])

pm = pymem.Pymem('notepad.exe')
pm.inject_python_interpreter()
filepath = os.path.join(os.path.abspath('.'), 'pymem_injection.txt')
filepath = filepath.replace("\\", "\\\\")
shellcode = """
f = open("{}", "w+")
f.write("pymem_injection")
f.close()
""".format(filepath)
pm.inject_python_shellcode(shellcode)
notepad.kill()

So what did that code do?

1. we start notepad process and get its handle

2. we hook pymem with notepad process

3. we call inject_python_interpreter() which will:

• dynamically finds the correct python dll and inject it

• register py_run_simple_string

4. then we inject some python code with inject_python_shellcode() which will:

• VirtualAllocEx some space for the code to be written

• write the actual payload into allocated space

• execute py_run_simple_string so the python code gets interpreted within the notepad process

5. finally we get rid of notepad process

1.5 Examples from the community

No support will be provided for any community related examples.

Here is a list of programs / scripts made by the community:

1.5.1 External glow ESP for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

1.5. Examples from the community 7

https://github.com/Snaacky
https://github.com/Snaacky/Diamond

pymem Documentation, Release alpha

Snippet

import pymem
import pymem.process

dwEntityList = (0x4D4B104)
dwGlowObjectManager = (0x5292F20)
m_iGlowIndex = (0xA428)
m_iTeamNum = (0xF4)

def main():
print("Diamond has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").

→˓lpBaseOfDll

while True:
glow_manager = pm.read_int(client + dwGlowObjectManager)

for i in range(1, 32): # Entities 1-32 are reserved for players.
entity = pm.read_int(client + dwEntityList + i * 0x10)

if entity:
entity_team_id = pm.read_int(entity + m_iTeamNum)
entity_glow = pm.read_int(entity + m_iGlowIndex)

if entity_team_id == 2: # Terrorist
pm.write_float(glow_manager + entity_glow * 0x38 + 0x4, float(1))

→˓ # R
pm.write_float(glow_manager + entity_glow * 0x38 + 0x8, float(0))

→˓ # G
pm.write_float(glow_manager + entity_glow * 0x38 + 0xC, float(0))

→˓ # B
pm.write_float(glow_manager + entity_glow * 0x38 + 0x10,

→˓float(1)) # Alpha
pm.write_int(glow_manager + entity_glow * 0x38 + 0x24, 1)

→˓ # Enable glow

elif entity_team_id == 3: # Counter-terrorist
pm.write_float(glow_manager + entity_glow * 0x38 + 0x4, float(0))

→˓ # R
pm.write_float(glow_manager + entity_glow * 0x38 + 0x8, float(0))

→˓ # G
pm.write_float(glow_manager + entity_glow * 0x38 + 0xC, float(1))

→˓ # B
pm.write_float(glow_manager + entity_glow * 0x38 + 0x10,

→˓float(1)) # Alpha
pm.write_int(glow_manager + entity_glow * 0x38 + 0x24, 1)

→˓ # Enable glow

if __name__ == '__main__':
main()

8 Chapter 1. User’s Guide

pymem Documentation, Release alpha

1.5.2 AssaultCube External ESP (Pygame, Pymem)

No support will be provided for any community related examples.

Meow, feel free to contact pymem author if you want this example to be removed as we didn’t reached you to
have your authorisation to post this

Credits goes to Meow.

Original source code: link

Warning

This comes, “as it” with no guarantees regarding its standing with any anti-cheat related.

Use this code at your own risk and be aware that using any sort of hack may resolve in having your account banned

Snippet

See Original source code above to see the whole source code.

Video

1.5.3 CS:GO Esp

No support will be provided for any community related examples.

pSilent, feel free to contact pymem author if you want this example to be removed as we didn’t reached you to
have your authorisation to post this

Credits goes to pSilent

Original post: link

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with any anti-cheat related.

Use this code at your own risk and be aware that using any sort of hack may resolve in having your account banned

Snippet

See Original source code above to see the whole source code.

1.5. Examples from the community 9

https://guidedhacking.com/members/meow.160618/
https://guidedhacking.com/threads/python-external-esp-pygame-pymem.14997/
https://guidedhacking.com/members/psilent.122196/
https://guidedhacking.com/threads/pyhack-my-first-and-only-hack-in-python.15057/
https://github.com/somegithubacc/pyhack-v2

pymem Documentation, Release alpha

Screenshot

1.5.4 No flash cheat for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import pymem
import pymem.process
import time

dwLocalPlayer = (0xD36B94)
m_flFlashMaxAlpha = (0xA40C)

def main():
print("Emerald has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").

→˓lpBaseOfDll

while True:
player = pm.read_int(client + dwLocalPlayer)
if player:

flash_value = player + m_flFlashMaxAlpha
if flash_value:

pm.write_float(flash_value, float(0))
time.sleep(1)

(continues on next page)

10 Chapter 1. User’s Guide

https://github.com/Snaacky
https://github.com/Snaacky/Emerald

pymem Documentation, Release alpha

(continued from previous page)

if __name__ == '__main__':
main()

1.5.5 Auto bunny hopper for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import keyboard
import pymem
import pymem.process
import time
from win32gui import GetWindowText, GetForegroundWindow

dwForceJump = (0x51F4D88)
dwLocalPlayer = (0xD36B94)
m_fFlags = (0x104)

def main():
print("Ruby has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").

→˓lpBaseOfDll

while True:
if not GetWindowText(GetForegroundWindow()) == "Counter-Strike: Global

→˓Offensive":
continue

if keyboard.is_pressed("space"):
force_jump = client + dwForceJump
player = pm.read_int(client + dwLocalPlayer)
if player:

on_ground = pm.read_int(player + m_fFlags)
if on_ground and on_ground == 257:

pm.write_int(force_jump, 5)
time.sleep(0.08)
pm.write_int(force_jump, 4)

(continues on next page)

1.5. Examples from the community 11

https://github.com/Snaacky
https://github.com/Snaacky/Ruby

pymem Documentation, Release alpha

(continued from previous page)

time.sleep(0.002)

if __name__ == '__main__':
main()

1.5.6 Trigger bot for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import keyboard
import pymem
import pymem.process
import time
from win32gui import GetWindowText, GetForegroundWindow

dwEntityList = (0x4D4B104)
dwForceAttack = (0x317C6EC)
dwLocalPlayer = (0xD36B94)
m_fFlags = (0x104)
m_iCrosshairId = (0xB3D4)
m_iTeamNum = (0xF4)

trigger_key = "shift"

def main():
print("Sapphire has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").

→˓lpBaseOfDll

while True:
if not keyboard.is_pressed(trigger_key):

time.sleep(0.1)

if not GetWindowText(GetForegroundWindow()) == "Counter-Strike: Global
→˓Offensive":

continue

if keyboard.is_pressed(trigger_key):

(continues on next page)

12 Chapter 1. User’s Guide

https://github.com/Snaacky
https://github.com/Snaacky/Sapphire

pymem Documentation, Release alpha

(continued from previous page)

player = pm.read_int(client + dwLocalPlayer)
entity_id = pm.read_int(player + m_iCrosshairId)
entity = pm.read_int(client + dwEntityList + (entity_id - 1) * 0x10)

entity_team = pm.read_int(entity + m_iTeamNum)
player_team = pm.read_int(player + m_iTeamNum)

if entity_id > 0 and entity_id <= 64 and player_team != entity_team:
pm.write_int(client + dwForceAttack, 6)

time.sleep(0.006)

if __name__ == '__main__':
main()

1.6 Common issues

Here is a non-exhaustive list of common issues related to pymem usage:

• The token does not have the specified privilege

Pymem requires that the terminal or interpreter be ran with administrator privileges

• AttributeError: ‘NoneType’ object has no attribute or any other Python error

Make sure you are running at least Python 3.5 (earlier versions are unsupported, future versions may have breaking
issues)

1.6. Common issues 13

pymem Documentation, Release alpha

14 Chapter 1. User’s Guide

CHAPTER 2

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API

This part of the documentation covers all the methods of Pymem. For parts where Pymem depends on external dlls,
we document the most important right here and provide links to the canonical documentation.

2.1.1 Pymem

2.1.2 Structures

2.1.3 Pattern

2.1.4 Exceptions

15

pymem Documentation, Release alpha

16 Chapter 2. API Reference

CHAPTER 3

Additional Notes

Design notes, legal information and changelog are here for the interested.

3.1 License

MIT License

Copyright (c) 2020 pymem

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.2 How to contribute to Pymem

Thank you for considering contributing to Pymem!

17

pymem Documentation, Release alpha

3.2.1 Support questions

Please, don’t use the issue tracker for this. The issue tracker is a tool to address bugs and feature requests in Pymem
itself. Use one of the following resources for questions about using Pymem or issues with your own code:

• The #general channel on our Discord chat: https://discord.gg/xaWNac8

• Ask on Stack Overflow. Search with Google first using: site:stackoverflow.com python pymem
{search term, exception message, etc.}

3.2.2 Reporting issues

Include the following information in your post:

• Describe what you expected to happen.

• If possible, include a minimal reproducible example to help us identify the issue. This also helps check that the
issue is not with your own code.

• Describe what actually happened. Include the full traceback if there was an exception.

• List your Python, Pymem versions. If possible, check if this issue is already fixed in the latest releases or the
latest code in the repository.

3.2.3 Submitting patches

If there is not an open issue for what you want to submit, prefer opening one for discussion before working on a PR.
You can work on any issue that doesn’t have an open PR linked to it or a maintainer assigned to it. These show up in
the sidebar. No need to ask if you can work on an issue that interests you.

Include the following in your patch:

• Include tests if your patch adds or changes code. Make sure the test fails without your patch.

• Update any relevant docs pages and docstrings.

First time setup

• Download and install the latest version of git.

• Configure git with your username and email.

$ git config --global user.name 'your name'
$ git config --global user.email 'your email'

• Make sure you have a GitHub account.

• Fork Pymem to your GitHub account by clicking the Fork button.

• Clone the main repository locally.

$ git clone https://github.com/srounet/pymem
$ cd pymem

• Add your fork as a remote to push your work to. Replace {username} with your username. This names the
remote “fork”, the default Pymem remote is “origin”.

18 Chapter 3. Additional Notes

https://discord.gg/xaWNac8
https://stackoverflow.com/questions/tagged/pymem?sort=linked
https://stackoverflow.com/help/minimal-reproducible-example
https://git-scm.com/downloads
https://help.github.com/en/articles/setting-your-username-in-git
https://help.github.com/en/articles/setting-your-commit-email-address-in-git
https://github.com/join
https://github.com/srounet/pymem/fork
https://help.github.com/en/articles/fork-a-repo#step-2-create-a-local-clone-of-your-fork

pymem Documentation, Release alpha

git remote add fork https://github.com/{username}/pymem

• Create a virtualenv.

$ python3 -m venv env
$. env/bin/activate

On Windows, activating is different.

> env\Scripts\activate

• Install Pymem in editable mode with development dependencies.

$ pip install -e .

Start coding

• Create a branch to identify the issue you would like to work on. If you’re submitting a bug or documentation
fix, branch off of the latest “.x” branch.

$ git fetch origin
$ git checkout -b your-branch-name origin/1.1.x

If you’re submitting a feature addition or change, branch off of the “master” branch.

$ git fetch origin
$ git checkout -b your-branch-name origin/master

• Using your favorite editor, make your changes, committing as you go.

• Include tests that cover any code changes you make. Make sure the test fails without your patch. Run the tests
as described below.

• Push your commits to your fork on GitHub and create a pull request. Link to the issue being addressed with
fixes #123 in the pull request.

$ git push --set-upstream fork your-branch-name

Running the tests

Run the basic test suite with pytest.

$ python -m pytest

This runs the tests for the current environment, which is usually sufficient. CI will run the full suite when you submit
your pull request.

Running test coverage

Generating a report of lines that do not have test coverage can indicate where to start contributing. Run pytest using
coverage and generate a report.

$ pip install -r requirements-test.txt
$ python -m pytest --cov=pymem

3.2. How to contribute to Pymem 19

https://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes
https://help.github.com/en/articles/creating-a-pull-request

pymem Documentation, Release alpha

Building the docs

Build the docs in the docs directory using Sphinx.

$ cd docs/source
$ make clean
$ make html

Open _build/html/index.html in your browser to view the docs.

Read more about Sphinx.

20 Chapter 3. Additional Notes

https://www.sphinx-doc.org/en/stable/

Python Module Index

p
pymem, 15

21

pymem Documentation, Release alpha

22 Python Module Index

Index

P
pymem (module), 15

23

	User’s Guide
	API Reference
	Additional Notes
	Python Module Index
	Index

