

Welcome to Pymem’s documentation!

Welcome to Pymem’s documentation.
Get started with Installation and then get an overview with the Quickstart.
There is also a more detailed Tutorials section that shows how to write small software with Pymem.
The rest of the docs describe each component of Pymem in detail, with a full reference in the API section.

Except for running tests or buliding the documentation, Pymem does not require any library it only manipulate
ctypes [https://docs.python.org/3.6/library/ctypes.html] and more precisely WinDLL [https://docs.python.org/3.6/library/ctypes.html?highlight=ctypes%20windll#ctypes.WinDLL].

The structure of this documentation is based on Flask [https://flask.palletsprojects.com/].

User’s Guide

This part of the documentation, which is mostly prose, begins with some
background information about Pymem, then focuses on step-by-step
instructions for reversing with Pymem.

	Foreword

	Installation

	Quickstart

	Tutorials

	Examples from the community

	Common issues

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API
	Pymem

	Structures

	Pattern

	Process

	Ptypes

	Thread

	Memory

	Exceptions

Additional Notes

Design notes, legal information and changelog are here for the interested.

	License

	How to contribute to Pymem
	Support questions

	Reporting issues

	Submitting patches

Foreword

Read this before you get started with Pymem.
This hopefully answers some questions about the purpose and goals of the project,
and then why you should and should not be using it.

Why Pymem ?

I decided to build pymem after some reading of the wonderfull book Gray Hat Python [https://nostarch.com/ghpython.htm] by
Justin Seitz, which I recommend as a first reading before even starting using
Pymem.
The book covers the win32api and important aspects of debuggers.
As I wanted to learn more on debugging, hooking and the windows API, I figured out
that writing a library was the perfect project.

Pymem history

So back in 2010, with my little knowledge of Python I wrote the first version of
this library (which has been entirely rewritten since). I figured out that most
of the resources you can find covering C, C++, C# of the windows API works “as it”
using python ctypes [https://docs.python.org/3.6/library/ctypes.html] without any effort, so I decided to wrap some of them into
Pymem.

In 2015, I decided to rebirth the library, and to rewrite it using python3.
The library is a toolbox for process memory manipulations, it supports memory reads,
writes and even assembly injection (thanks to pyfasm [https://github.com/srounet/pyfasm]).

In 2020, the support for pyfasm was dropped because of its incompatibility with x64 processes.
It now includes testing, and the documentation as been totally rewritten with tutorials.

Why and when using Pymem

Pymem has been built to reverse games such as Worlf of Warcraft, so if you plan to
write a bot for this kind of game, you’re in the right place. You can also use
pymem to do injections, assembly, memory pattern search and a lot more.

You should head over the Tutorials section and see what Pymem is capable of!

Continue to Installation, the Quickstart or Tutorials.

Installation

Pymem has no dependencies and works on both x86 and x64 architecture.

You will need Python 3 or newer to get started, so be sure to have an up-to-date Python 3.x installation.

If you are familiar with pyenv [https://github.com/pyenv/pyenv], it is highly recommended to sandbox pymem installation within a custom virtualenv.

Path

In order to use all pymem fonctionalities you have to first make sure that system python directory is configured within
windows system PATH.

In a PowerShell window type:

$env:PATH

This PATH should contain the directory where python is installed system wide or at least have access to pythonXX.dll
If you don’t find python in your PATH, then it is recommended to add it.

- Open the Start Search, type in "env", and choose "Edit the system environment variables"
- Click the "Environment Variables..." button
- Under the "System Variables" section (the lower half), find the row with "Path" in the first column, and click edit.
- The "Edit environment variable" UI will appear. Here, you can click "New" and type in the new path you want to add.
- Add your python path and close the windows (something like: C:\Users\xxx\AppData\Local\Programs\Python\Python38)

Virtual environments

Use a virtual environment to manage the dependencies for your project, both in
development and in production.

What problem does a virtual environment solve? The more Python projects you
have, the more likely it is that you need to work with different versions of
Python libraries, or even Python itself. Newer versions of libraries for one
project can break compatibility in another project.

Virtual environments are independent groups of Python libraries, one for each
project. Packages installed for one project will not affect other projects or
the operating system’s packages.

Python comes bundled with the venv module to create virtual
environments.

Create an environment

Create a project folder and a venv folder within:

$ mkdir myproject
$ cd myproject
$ python3 -m venv venv

On Windows:

$ py -3 -m venv venv

Activate the environment

Before you work on your project, activate the corresponding environment:

$. venv/bin/activate

On Windows:

> venv\Scripts\activate

Your shell prompt will change to show the name of the activated
environment.

Install Pymem

Within the activated environment, use the following command to install
Pymem:

$ pip install pymem

Pymem is now installed. Check out the Quickstart or go to the
Documentation Overview.

Quickstart

Eager to get started? This page gives a good introduction to Pymem.
Follow Installation to set up a project and install Pymem first.

A Minimal Application

A minimal Pymem application looks something like this:

from pymem import Pymem

pm = Pymem('notepad.exe')
print('Process id: %s' % pm.process_id)
address = pm.allocate(10)
print('Allocated address: %s' % address)
pm.write_int(address, 1337)
value = pm.read_int(address)
print('Allocated value: %s' % value)
pm.free(address)

So what did that code do?

	First we imported the Pymem class. An instance of
this class will be our win32api wrapper

	Next we create an instance of this class. The first argument is the
name of the windows process we want to hook into.

Be aware that after creating an instance of Pymem with the process name as
an argument, the process will be opened with debug mode flags.

	We then allocate 10 bytes into given _notepad.exe_ process with allocate().

	For the example we then write an integer with write_int() and read it with read_int().

	We then free memory from the current opened process at the given address with free().

Save it as hello.py or something similar. Make sure to not call
your application pymem.py because this would conflict with Pymem
itself.

To run the application, first start notepad.exe be sure to have pymem installed within your current
python environment and simply execute your script.

$ python hello.py
 Process id: 2345
 Allocated address: 123456789
 Allocated value: 1337

Tutorials

	Listing process modules

	Injecting a python interpreter into any process

Listing process modules

Pymem comes with somes process utilities like listing loaded modules.

Here is a snippet that will list loaded process modules

import pymem

pm = pymem.Pymem('python.exe')
modules = list(pm.list_modules())
for module in modules:
 print(module.name)

So what did that code do?

	we hook pymem with python.exe process

	we retrieve the list of loaded modules

	for every module listed, we display its name

note: every module is an instance of MODULEINFO()

Injecting a python interpreter into any process

Pymem allow you to inject python.dll into a target process and then map py_run_simple_string
with a single call to inject_python_interpreter().

from pymem import Pymem
import os
import subprocess

notepad = subprocess.Popen(['notepad.exe'])

pm = Pymem('notepad.exe')
pm.inject_python_interpreter()
filepath = os.path.join(os.path.abspath('.'), 'pymem_injection.txt')
filepath = filepath.replace("\\", "\\\\")
shellcode = """
f = open("{}", "w+")
f.write("pymem_injection")
f.close()
""".format(filepath)
pm.inject_python_shellcode(shellcode)
notepad.kill()

So what did that code do?

	we start notepad process and get its handle

	we hook pymem with notepad process

	we call inject_python_interpreter() which will:

	dynamically finds the correct python dll and inject it

	register py_run_simple_string

	then we inject some python code with inject_python_shellcode() which will:

	VirtualAllocEx some space for the code to be written

	write the actual payload into allocated space

	execute py_run_simple_string so the python code gets interpreted within the notepad process

	finally we get rid of notepad process

Examples from the community

No support will be provided for any community related examples.

Here is a list of programs / scripts made by the community:

	External glow ESP for CS:GO

	AssaultCube External ESP (Pygame, Pymem)

	CS:GO Esp

	No flash cheat for CS:GO

	Auto bunny hopper for CS:GO

	Trigger bot for CS:GO

External glow ESP for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky [https://github.com/Snaacky].

Original source code: github [https://github.com/Snaacky/Diamond]

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import pymem
import pymem.process

dwEntityList = (0x4D4B104)
dwGlowObjectManager = (0x5292F20)
m_iGlowIndex = (0xA428)
m_iTeamNum = (0xF4)

def main():
 print("Diamond has launched.")
 pm = pymem.Pymem("csgo.exe")
 client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

 while True:
 glow_manager = pm.read_int(client + dwGlowObjectManager)

 for i in range(1, 32): # Entities 1-32 are reserved for players.
 entity = pm.read_int(client + dwEntityList + i * 0x10)

 if entity:
 entity_team_id = pm.read_int(entity + m_iTeamNum)
 entity_glow = pm.read_int(entity + m_iGlowIndex)

 if entity_team_id == 2: # Terrorist
 pm.write_float(glow_manager + entity_glow * 0x38 + 0x4, float(1)) # R
 pm.write_float(glow_manager + entity_glow * 0x38 + 0x8, float(0)) # G
 pm.write_float(glow_manager + entity_glow * 0x38 + 0xC, float(0)) # B
 pm.write_float(glow_manager + entity_glow * 0x38 + 0x10, float(1)) # Alpha
 pm.write_int(glow_manager + entity_glow * 0x38 + 0x24, 1) # Enable glow

 elif entity_team_id == 3: # Counter-terrorist
 pm.write_float(glow_manager + entity_glow * 0x38 + 0x4, float(0)) # R
 pm.write_float(glow_manager + entity_glow * 0x38 + 0x8, float(0)) # G
 pm.write_float(glow_manager + entity_glow * 0x38 + 0xC, float(1)) # B
 pm.write_float(glow_manager + entity_glow * 0x38 + 0x10, float(1)) # Alpha
 pm.write_int(glow_manager + entity_glow * 0x38 + 0x24, 1) # Enable glow

if __name__ == '__main__':
 main()

AssaultCube External ESP (Pygame, Pymem)

No support will be provided for any community related examples.

Meow, feel free to contact pymem author if you want this example to be removed as we didn’t reached you to have your
authorisation to post this

Credits goes to Meow [https://guidedhacking.com/members/meow.160618/].

Original source code: link [https://guidedhacking.com/threads/python-external-esp-pygame-pymem.14997/]

Warning

This comes, “as it” with no guarantees regarding its standing with any anti-cheat related.

Use this code at your own risk and be aware that using any sort of hack may resolve in having your account banned

Snippet

See Original source code above to see the whole source code.

Video

 CS:GO Esp

CS:GO Esp

No support will be provided for any community related examples.

pSilent, feel free to contact pymem author if you want this example to be removed as we didn’t reached you to have your
authorisation to post this

Credits goes to pSilent [https://guidedhacking.com/members/psilent.122196/]

Original post: link [https://guidedhacking.com/threads/pyhack-my-first-and-only-hack-in-python.15057/]

Original source code: github [https://github.com/somegithubacc/pyhack-v2]

Warning

This comes, “as it” with no guarantees regarding its standing with any anti-cheat related.

Use this code at your own risk and be aware that using any sort of hack may resolve in having your account banned

Snippet

See Original source code above to see the whole source code.

Screenshot

[image: Alternative text]

 No flash cheat for CS:GO

No flash cheat for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky [https://github.com/Snaacky].

Original source code: github [https://github.com/Snaacky/Emerald]

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import pymem
import pymem.process
import time

dwLocalPlayer = (0xD36B94)
m_flFlashMaxAlpha = (0xA40C)

def main():
 print("Emerald has launched.")
 pm = pymem.Pymem("csgo.exe")
 client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

 while True:
 player = pm.read_int(client + dwLocalPlayer)
 if player:
 flash_value = player + m_flFlashMaxAlpha
 if flash_value:
 pm.write_float(flash_value, float(0))
 time.sleep(1)

if __name__ == '__main__':
 main()

 Auto bunny hopper for CS:GO

Auto bunny hopper for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky [https://github.com/Snaacky].

Original source code: github [https://github.com/Snaacky/Ruby]

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import keyboard
import pymem
import pymem.process
import time
from win32gui import GetWindowText, GetForegroundWindow

dwForceJump = (0x51F4D88)
dwLocalPlayer = (0xD36B94)
m_fFlags = (0x104)

def main():
 print("Ruby has launched.")
 pm = pymem.Pymem("csgo.exe")
 client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

 while True:
 if not GetWindowText(GetForegroundWindow()) == "Counter-Strike: Global Offensive":
 continue

 if keyboard.is_pressed("space"):
 force_jump = client + dwForceJump
 player = pm.read_int(client + dwLocalPlayer)
 if player:
 on_ground = pm.read_int(player + m_fFlags)
 if on_ground and on_ground == 257:
 pm.write_int(force_jump, 5)
 time.sleep(0.08)
 pm.write_int(force_jump, 4)

 time.sleep(0.002)

if __name__ == '__main__':
 main()

 Trigger bot for CS:GO

Trigger bot for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky [https://github.com/Snaacky].

Original source code: github [https://github.com/Snaacky/Sapphire]

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import keyboard
import pymem
import pymem.process
import time
from win32gui import GetWindowText, GetForegroundWindow

dwEntityList = (0x4D4B104)
dwForceAttack = (0x317C6EC)
dwLocalPlayer = (0xD36B94)
m_fFlags = (0x104)
m_iCrosshairId = (0xB3D4)
m_iTeamNum = (0xF4)

trigger_key = "shift"

def main():
 print("Sapphire has launched.")
 pm = pymem.Pymem("csgo.exe")
 client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

 while True:
 if not keyboard.is_pressed(trigger_key):
 time.sleep(0.1)

 if not GetWindowText(GetForegroundWindow()) == "Counter-Strike: Global Offensive":
 continue

 if keyboard.is_pressed(trigger_key):
 player = pm.read_int(client + dwLocalPlayer)
 entity_id = pm.read_int(player + m_iCrosshairId)
 entity = pm.read_int(client + dwEntityList + (entity_id - 1) * 0x10)

 entity_team = pm.read_int(entity + m_iTeamNum)
 player_team = pm.read_int(player + m_iTeamNum)

 if entity_id > 0 and entity_id <= 64 and player_team != entity_team:
 pm.write_int(client + dwForceAttack, 6)

 time.sleep(0.006)

if __name__ == '__main__':
 main()

 Common issues

Common issues

Here is a non-exhaustive list of common issues related to pymem usage:

	The token does not have the specified privilege

Pymem requires that the terminal or interpreter be ran with administrator privileges

	AttributeError: ‘NoneType’ object has no attribute or any other Python error

Make sure you are running at least Python 3.5 (earlier versions are unsupported, future versions may have breaking issues)

 API

API

This part of the documentation covers all the methods of Pymem. For
parts where Pymem depends on external dlls, we document the most
important right here and provide links to the canonical documentation.

Pymem

	
class pymem.Pymem(process_name=None)

	Initialize the Pymem class.
If process_name is given, will open the process and retrieve a handle over it.

	Parameters

	process_name (str) – The name of the process to be opened

	
allocate(size)

	Allocate memory into the current opened process.

	Parameters

	size (int) – The size of the region of memory to allocate, in bytes.

	Raises

	
	ProcessError – If there is no process opened

	TypeError – If size is not an integer

	Returns

	The base address of the current process.

	Return type

	int

	
property base_address

	Gets the memory address where the main module was loaded (ie address of exe file in memory)

	Raises

	
	TypeError – If process_id is not an integer

	ProcessError – Could not find process first module address

	Returns

	Address of main module

	Return type

	int

	
check_wow64()

	Check if a process is running under WoW64.

	
close_process()

	Close the current opened process

	Raises

	ProcessError – If there is no process opened

	
free(address)

	Free memory from the current opened process given an address.

	Parameters

	address (int) – An address of the region of memory to be freed.

	Raises

	
	ProcessError – If there is no process opened

	TypeError – If address is not an integer

	
inject_python_interpreter(initsigs=1)

	Inject python interpreter into target process and call Py_InitializeEx.

	
inject_python_shellcode(shellcode)

	Inject a python shellcode into memory and execute it.

	Parameters

	shellcode (str) – A string with python instructions.

	
list_modules()

	List a process loaded modules.

	Returns

	List of process loaded modules

	Return type

	list(MODULEINFO)

	
property main_thread

	Retrieve ThreadEntry32 of main thread given its creation time.

	Raises

	ProcessError – If there is no process opened or could not list process thread

	Returns

	Process main thread

	Return type

	Thread

	
property main_thread_id

	Retrieve th32ThreadID from main thread

	Raises

	ProcessError – If there is no process opened or could not list process thread

	Returns

	Main thread identifier

	Return type

	int

	
open_process_from_id(process_id)

	Open process given its name and stores the handle into self.process_handle.

	Parameters

	process_id (int) – The unique process identifier

	Raises

	
	TypeError – If process identifier is not an integer

	CouldNotOpenProcess – If process cannot be opened

	
open_process_from_name(process_name)

	Open process given its name and stores the handle into process_handle

	Parameters

	process_name (str) – The name of the process to be opened

	Raises

	
	TypeError – If process name is not valid

	ProcessNotFound – If process name is not found

	CouldNotOpenProcess – If process cannot be opened

	
property process_base

	Lookup process base Module.

	Raises

	
	TypeError – process_id is not an integer

	ProcessError – Could not find process first module address

	Returns

	Base module information

	Return type

	MODULEINFO

	
read_bool(address)

	Reads 1 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	bool

	
read_bytes(address, length)

	Reads bytes from an area of memory in a specified process.

	Parameters

	
	address (int) – An address of the region of memory to be read.

	length (int) – Number of bytes to be read

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	Returns

	the raw value read

	Return type

	bytes

	
read_char(address)

	Reads 1 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	str

	
read_double(address)

	Reads 8 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_float(address)

	Reads 4 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	float

	
read_int(address)

	Reads 4 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_long(address)

	Reads 4 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_longlong(address)

	Reads 8 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_short(address)

	Reads 2 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_string(address, byte=50)

	Reads n byte from an area of memory in a specified process.

	Parameters

	
	address (int) – An address of the region of memory to be read.

	byte (int) – Amount of bytes to be read

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	str

	
read_uchar(address)

	Reads 1 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	str

	
read_uint(address)

	Reads 4 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_ulong(address)

	Reads 4 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_ulonglong(address)

	Reads 8 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
read_ushort(address)

	Reads 2 byte from an area of memory in a specified process.

	Parameters

	address (int) – An address of the region of memory to be read.

	Raises

	
	ProcessError – If there is no opened process

	MemoryReadError – If ReadProcessMemory failed

	TypeError – If address is not a valid integer

	Returns

	returns the value read

	Return type

	int

	
start_thread(address, params=None)

	Create a new thread within the current debugged process.

	Parameters

	
	address (int) – An address from where the thread starts

	params (int) – An optional address with thread parameters

	Returns

	The new thread identifier

	Return type

	int

	
write_bool(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (bool) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_bytes(address, value, length)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (bytes) – the value to be written

	length (int) – Number of bytes to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_char(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (str) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_double(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (float) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_float(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (float) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_int(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_long(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_longlong(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_short(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_string(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (str) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_uchar(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_uint(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_ulong(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_ulonglong(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

	
write_ushort(address, value)

	Write value to the given address into the current opened process.

	Parameters

	
	address (int) – An address of the region of memory to be written.

	value (int) – the value to be written

	Raises

	
	ProcessError – If there is no opened process

	MemoryWriteError – If WriteProcessMemory failed

	TypeError – If address is not a valid integer

Structures

	
class pymem.ressources.structure.CLIENT_ID

	

	
class pymem.ressources.structure.EnumProcessModuleEX

	The following are the EnumProcessModuleEX flags

https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms682633(v=vs.85).aspx

	
LIST_MODULES_32BIT = 1

	List the 32-bit modules

	
LIST_MODULES_64BIT = 2

	List the 64-bit modules.

	
LIST_MODULES_ALL = 3

	List all modules.

	
LIST_MODULES_DEFAULT = 0

	Use the default behavior.

	
class pymem.ressources.structure.FILETIME

	

	
class pymem.ressources.structure.FLOATING_SAVE_AREA

	Undocumented ctypes.Structure used for ThreadContext.

	
pymem.ressources.structure.LPMODULEENTRY32

	alias of pymem.ressources.structure.LP_ModuleEntry32

	
pymem.ressources.structure.LPSECURITY_ATTRIBUTES

	alias of pymem.ressources.structure.LP_SECURITY_ATTRIBUTES

	
class pymem.ressources.structure.LUID

	

	
class pymem.ressources.structure.LUID_AND_ATTRIBUTES

	

	
pymem.ressources.structure.MEMORY_BASIC_INFORMATION

	alias of pymem.ressources.structure.MEMORY_BASIC_INFORMATION64

	
class pymem.ressources.structure.MEMORY_BASIC_INFORMATION32

	Contains information about a range of pages in the virtual address space of a process.
The VirtualQuery and VirtualQueryEx functions use this structure.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775(v=vs.85).aspx

	
class pymem.ressources.structure.MEMORY_BASIC_INFORMATION64

	

	
class pymem.ressources.structure.MEMORY_PROTECTION(value)

	The following are the memory-protection options;
you must specify one of the following values when allocating or protecting a page in memory
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366786(v=vs.85).aspx

	
PAGE_EXECUTE_READWRITE = 64

	Enables execute, read-only, or read/write access to the committed region of pages.

	
class pymem.ressources.structure.MEMORY_STATE(value)

	The type of memory allocation

	
MEM_DECOMMIT = 16384

	Decommits the specified region of committed pages. After the operation, the pages are in the reserved state.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx

	
MEM_FREE = 65536

	XXX

	
MEM_RELEASE = 32768

	Releases the specified region of pages. After the operation, the pages are in the free state.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx

	
MEM_RESERVE = 8192

	XXX

	
class pymem.ressources.structure.MEMORY_TYPES(value)

	An enumeration.

	
MEM_IMAGE = 16777216

	XXX

	
MEM_MAPPED = 262144

	XXX

	
MEM_PRIVATE = 131072

	XXX

	
class pymem.ressources.structure.MODULEINFO(handle)

	Contains the module load address, size, and entry point.

	
lpBaseOfDll

	

	
SizeOfImage

	

	
EntryPoint

	

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684229(v=vs.85).aspx

	
class pymem.ressources.structure.ModuleEntry32(*args, **kwds)

	Describes an entry from a list of the modules belonging to the specified process.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684225%28v=vs.85%29.aspx

	
class pymem.ressources.structure.NT_TIB

	

	
class pymem.ressources.structure.PROCESS(value)

	Process manipulation flags

	
DELETE = 65536

	Required to delete the object.

	
PROCESS_ALL_ACCESS = 2035711

	All possible access rights for a process object.

	
PROCESS_CREATE_PROCESS = 128

	Required to create a process.

	
PROCESS_CREATE_THREAD = 2

	Required to create a thread.

	
PROCESS_DUP_HANDLE = 64

	PROCESS_DUP_HANDLE

	
PROCESS_SET_INFORMATION = 512

	Required to set certain information about a process, such as its priority class (see SetPriorityClass).

	
PROCESS_SET_QUOTA = 256

	Required to set memory limits using SetProcessWorkingSetSize.

	
PROCESS_SUSPEND_RESUME = 2048

	Required to suspend or resume a process.

	
PROCESS_TERMINATE = 1

	Required to terminate a process using TerminateProcess.

	
PROCESS_VM_OPERATION = 8

	Required to perform an operation on the address space of a process (see VirtualProtectEx and WriteProcessMemory).

	
PROCESS_VM_READ = 16

	Required to read memory in a process using ReadProcessMemory.

	
PROCESS_VM_WRITE = 32

	Required to write to memory in a process using WriteProcessMemory.

	
READ_CONTROL = 131072

	Required to read information in the security descriptor for the object, not including the information in the
SACL. To read or write the SACL, you must request the ACCESS_SYSTEM_SECURITY access right. For more information
see SACL Access Right.

	
STANDARD_RIGHTS_REQUIRED = 983040

	Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access.

	
SYNCHRONIZE = 1048576

	Required to wait for the process to terminate using the wait functions.

	
WRITE_DAC = 262144

	Required to modify the DACL in the security descriptor for the object.

	
WRITE_OWNER = 524288

	Required to change the owner in the security descriptor for the object.

	
pymem.ressources.structure.PTOKEN_PRIVILEGES

	alias of pymem.ressources.structure.LP_TOKEN_PRIVILEGES

	
class pymem.ressources.structure.ProcessEntry32(*args, **kwds)

	Describes an entry from a list of the processes residing in the system address space when a snapshot was taken.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684839(v=vs.85).aspx

	
class pymem.ressources.structure.SECURITY_ATTRIBUTES

	The SECURITY_ATTRIBUTES structure contains the security descriptor for an
object and specifies whether the handle retrieved by specifying this structure
is inheritable.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379560(v=vs.85).aspx

	
class pymem.ressources.structure.SE_TOKEN_PRIVILEGE(value)

	An access token contains the security information for a logon session.
The system creates an access token when a user logs on, and every process executed on behalf of the user has a copy
of the token.

	
class pymem.ressources.structure.SMALL_TEB

	

	
class pymem.ressources.structure.SYSTEM_INFO

	Contains information about the current computer system.
This includes the architecture and type of the processor, the number
of processors in the system, the page size, and other such information.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958(v=vs.85).aspx

	
class pymem.ressources.structure.THREAD_BASIC_INFORMATION

	

	
class pymem.ressources.structure.TIB_UNION

	

	
class pymem.ressources.structure.TOKEN(value)

	An enumeration.

	
class pymem.ressources.structure.TOKEN_PRIVILEGES

	

	
class pymem.ressources.structure.ThreadContext

	Represents a thread context

	
class pymem.ressources.structure.ThreadEntry32(*args, **kwds)

	Describes an entry from a list of the threads executing in the system when a snapshot was taken.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686735(v=vs.85).aspx

Pattern

	
pymem.pattern.pattern_scan_module(handle, module, pattern, *, return_multiple=False)

	Given a handle over an opened process and a module will scan memory after
a byte pattern and return its corresponding memory address.

	Parameters

	
	handle (int) – Handle to an open object

	module (MODULEINFO) – An instance of a given module

	pattern (bytes) – A regex byte pattern to search for

	return_multiple (bool) – If multiple results should be returned instead of stopping on the first

	Returns

	Memory address of given pattern, or None if one was not found
or a list of found addresses in return_multiple is True

	Return type

	int, list, optional

Examples

>>> pm = pymem.Pymem("Notepad.exe")
Here the "." means that the byte can be any byte; a "wildcard"
also note that this pattern may be outdated
>>> bytes_pattern = b".\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00" \
... b"\x00\x00\x00\x00\x00\x00..\x00\x00..\x00\x00\x64\x04"
>>> module_notepad = pymem.process.module_from_name(pm.process_handle, "Notepad.exe")
>>> character_count_address = pymem.pattern.pattern_scan_module(pm.process_handle, module_notepad, bytes_pattern)

	
pymem.pattern.scan_pattern_page(handle, address, pattern, *, return_multiple=False)

	Search a byte pattern given a memory location.
Will query memory location information and search over until it reaches the
length of the memory page. If nothing is found the function returns the
next page location.

	Parameters

	
	handle (int) – Handle to an open object

	address (int) – An address to search from

	pattern (bytes) – A regex byte pattern to search for

	return_multiple (bool) – If multiple results should be returned instead of stopping on the first

	Returns

	next_region, found address

found address may be None if one was not found, or we didn’t have permission to scan
the region

if return_multiple is True found address will instead be a list of found addresses
or an empty list if no results

	Return type

	tuple

Examples

>>> pm = pymem.Pymem("Notepad.exe")
>>> address_reference = 0x7ABC00001
Here the "." means that the byte can be any byte; a "wildcard"
also note that this pattern may be outdated
>>> bytes_pattern = b".\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00" \
... b"\x00\x00\x00\x00\x00\x00..\x00\x00..\x00\x00\x64\x04"
>>> character_count_address = pymem.pattern.scan_pattern_page(pm.process_handle, address_reference, bytes_pattern)

Process

	
pymem.process.base_module(handle)

	Returns process base module

	Parameters

	handle (int) – A valid handle to an open object

	Returns

	The base module of the process

	Return type

	MODULEINFO

	
pymem.process.close_handle(handle)

	Closes an open object handle.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211%28v=vs.85%29.aspx

	Parameters

	handle (int) – A valid handle to an open object

	Returns

	If the closure succeeded

	Return type

	bool

	
pymem.process.enum_process_module(handle)

	List and retrieves the base names of the specified loaded module within a process
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682633(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683196(v=vs.85).aspx

	Parameters

	handle (int) – Handle of the process to enum the modules of

	Returns

	The process’s modules

	Return type

	list[MODULEINFO]

	
pymem.process.enum_process_thread(process_id)

	List all threads of given processes_id

	Parameters

	process_id (int) – Identifier of the process to enum the threads of

	Returns

	The process’s threads

	Return type

	list[ThreadEntry32]

	
pymem.process.get_luid(name)

	Get the LUID for the SeCreateSymbolicLinkPrivilege

	
pymem.process.get_process_token()

	Get the current process token

	
pymem.process.get_python_dll(version)

	Given a python dll version will find its path using the current process as a placeholder

	Parameters

	version (str) – A string representation of python version as a dll (python38.dll)

	Returns

	The full path of dll

	Return type

	str

	
pymem.process.inject_dll(handle, filepath)

	Inject a dll into opened process.

	Parameters

	
	handle (int) – Handle to an open object

	filepath (bytes) – Dll to be injected filepath

	Returns

	The address of injected dll

	Return type

	DWORD

	
pymem.process.is_64_bit(handle)

	Determines whether the specified process is running under WOW64 (emulation).

	Parameters

	handle (int) – Handle of the process to check wow64 status of

	Returns

	If the process is running under wow64

	Return type

	bool

	
pymem.process.list_processes()

	List all processes
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682489%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684834%28v=vs.85%29.aspx

	Returns

	A list of open process entries

	Return type

	list[ProcessEntry32]

	
pymem.process.module_from_name(process_handle, module_name)

	Retrieve a module loaded by given process.

	Parameters

	
	process_handle (int) – Handle to the process to get the module from

	module_name (str) – Name of the module to get

	Returns

	The retrieved module

	Return type

	MODULEINFO

Examples

>>> d3d9 = module_from_name(process_handle, 'd3d9')

	
pymem.process.open(process_id, debug=True, process_access=None)

	Open a process given its process_id.
By default, the process is opened with full access and in debug mode.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379588%28v=vs.85%29.aspx

	Parameters

	
	process_id (int) – The identifier of the process to be opened

	debug (bool) – If the process should be opened in debug mode

	process_access (pymem.ressources.structure.PROCESS) – Desired access level, defaulting to all access

	Returns

	A handle to the opened process

	Return type

	int

	
pymem.process.open_main_thread(process_id)

	List given process threads and return a handle to first created one.

	Parameters

	process_id (int) – The identifier of the process

	Returns

	A handle to the main thread

	Return type

	int

	
pymem.process.open_thread(thread_id, thread_access=None)

	Opens an existing thread object.
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684335%28v=vs.85%29.aspx

	Parameters

	
	thread_id (int) – The identifier of the thread to be opened

	thread_access (int) – Desired access level, defaulting to all access

	Returns

	A handle to the opened thread

	Return type

	int

	
pymem.process.process_from_id(process_id)

	Open a process given its name.

	Parameters

	process_id (int) – The identifier of the process to be opened

	Returns

	The process entry of the opened process

	Return type

	ProcessEntry32

	
pymem.process.process_from_name(name)

	Open a process given its name.

	Parameters

	name (str) – The name of the process to be opened

	Returns

	The process entry of the opened process

	Return type

	ProcessEntry32

	
pymem.process.set_debug_privilege(lpszPrivilege, bEnablePrivilege)

	Leverage current process privileges.

	Parameters

	
	lpszPrivilege (str) – Privilege name

	bEnablePrivilege (bool) – Enable privilege

	Returns

	If privileges have been leveraged

	Return type

	bool

Ptypes

	
class pymem.ptypes.RemotePointer(handle, v, endianess='little-endian')

	Pointer capable of reading the value mapped into another process memory.

	Parameters

	
	handle (int) – Handle to the process

	v (int, RemotePointer, any ctypes type) – The address value

	endianess (str) – The endianess of the remote pointer, defaulting to little-endian

	Raises

	PymemAlignmentError – If endianess is not a valid alignment

Notes

The bool of RemotePointer checks if the internal value is 0

	
property cvalue

	Reads targeted process memory and returns the value pointed by the given address.

	Returns

	The value pointed at by this remote pointer as a ctypes type instance

	Return type

	a ctypes type

	
property value

	Reads targeted process memory and returns the value pointed by the given address.

	Returns

	The value pointed at by this remote pointer

	Return type

	int

Thread

	
class pymem.thread.Thread(process_handle, th_entry_32)

	Provides basic thread information such as TEB.

	Parameters

	
	process_handle (int) – A handle to an opened process

	th_entry_32 (ThreadEntry32) – Target thread’s entry object

Memory

	
pymem.memory.allocate_memory(handle, size, allocation_type=None, protection_type=None)

	Reserves or commits a region of memory within the virtual address space of a specified process.
The function initializes the memory it allocates to zero, unless MEM_RESET is used.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	size (int) – The size of the region of memory to allocate, in bytes.

	allocation_type (MEMORY_STATE) – The type of memory allocation.

	protection_type (MEMORY_PROTECTION) – The memory protection for the region of pages to be allocated.

	Returns

	The address of the allocated region of pages.

	Return type

	int

	
pymem.memory.free_memory(handle, address, free_type=None)

	Releases, decommits, or releases and decommits a region of memory within the virtual address space of a specified
process.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be freed.

	free_type (MEMORY_PROTECTION) – The type of free operation.

	Returns

	A boolean indicating if the call was a success.

	Return type

	int

	
pymem.memory.read_bool(handle, address)

	Reads 1 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘?’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as a string

	Return type

	bool

	
pymem.memory.read_bytes(handle, address, byte)

	Reads data from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	byte (int) – Number of bytes to be read

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as bytes

	Return type

	bytes

	
pymem.memory.read_char(handle, address)

	Reads 1 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<b’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as a string

	Return type

	str

	
pymem.memory.read_double(handle, address)

	Reads 8 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<d’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as a float

	Return type

	float

	
pymem.memory.read_float(handle, address)

	Reads 4 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<f’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as a float

	Return type

	float

	
pymem.memory.read_int(handle, address)

	Reads 4 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<i’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_long(handle, address)

	Reads 4 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<l’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_longlong(handle, address)

	Reads 8 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<q’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_short(handle, address)

	Reads 2 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<h’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_string(handle, address, byte=50)

	Reads n byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	byte (int, default=50) – max number of bytes to check for null terminator, defaults to 50

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as a string

	Return type

	str

	
pymem.memory.read_uchar(handle, address)

	Reads 1 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<B’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_uint(handle, address, is_64=False)

	Reads 4 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<I’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	is_64 (bool) – Should we unpack as big-endian

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_ulong(handle, address)

	Reads 4 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<L’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_ulonglong(handle, address)

	Reads 8 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<Q’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.read_ushort(handle, address)

	Reads 2 byte from an area of memory in a specified process.
The entire area to be read must be accessible or the operation fails.

Unpack the value using struct.unpack(‘<H’)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be read.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – If ReadProcessMemory failed

	Returns

	The raw value read as an int

	Return type

	int

	
pymem.memory.virtual_query(handle, address)

	Retrieves information about a range of pages within the virtual address space
of a specified process.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366907(v=vs.85).aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of to be read.

	Returns

	A memory basic information object

	Return type

	MEMORY_BASIC_INFORMATION

	
pymem.memory.write_bool(handle, address, value)

	Writes 1 byte to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (bool) – A boolean representing the value to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_bytes(handle, address, data, length)

	Writes data to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

Casts address using ctypes.c_char_p.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	data (void) – A buffer that contains data to be written

	length (int) – Number of bytes to be written.

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_char(handle, address, value)

	Writes 1 byte to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (str) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_double(handle, address, value)

	Writes 8 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (float) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_float(handle, address, value)

	Writes 4 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (float) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_int(handle, address, value)

	Writes 4 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_long(handle, address, value)

	Writes 4 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_longlong(handle, address, value)

	Writes 8 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_short(handle, address, value)

	Writes 2 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_string(handle, address, bytecode)

	Writes n bytes of len(bytecode) to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	bytecode (str, bytes) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_uchar(handle, address, value)

	Writes 1 byte to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (str) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_uint(handle, address, value)

	Writes 4 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_ulong(handle, address, value)

	Writes 4 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_ulonglong(handle, address, value)

	Writes 8 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

	
pymem.memory.write_ushort(handle, address, value)

	Writes 2 bytes to an area of memory in a specified process.
The entire area to be written to must be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

	Parameters

	
	handle (int) – The handle to a process. The function allocates memory within the virtual address space of this process.
The handle must have the PROCESS_VM_OPERATION access right.

	address (int) – An address of the region of memory to be written.

	value (int) – A buffer that contains data to be written

	Raises

	
	TypeError – If address is not a valid integer

	WinAPIError – if WriteProcessMemory failed

	Returns

	A boolean indicating a successful write.

	Return type

	bool

Exceptions

	
exception pymem.exception.CouldNotOpenProcess(process_id)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.MemoryReadError(address, length, error_code=None)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.MemoryWriteError(address, value, error_code=None)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.ProcessError(message)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.ProcessNotFound(process_name)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.PymemAlignmentError(message)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.PymemError(message)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.PymemMemoryError(message)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.PymemTypeError(message)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pymem.exception.WinAPIError(error_code)

	
	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

 License

License

MIT License

Copyright (c) 2020 pymem

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 How to contribute to Pymem

How to contribute to Pymem

Thank you for considering contributing to Pymem!

Support questions

Please, don’t use the issue tracker for this. The issue tracker is a
tool to address bugs and feature requests in Pymem itself. Use one of
the following resources for questions about using Pymem or issues with
your own code:

	The #general channel on our Discord chat:
https://discord.gg/xaWNac8

	Ask on Stack Overflow [https://stackoverflow.com/questions/tagged/pymem?sort=linked]. Search with Google first using:
site:stackoverflow.com python pymem {search term, exception message, etc.}

Reporting issues

Include the following information in your post:

	Describe what you expected to happen.

	If possible, include a minimal reproducible example [https://stackoverflow.com/help/minimal-reproducible-example] to help us
identify the issue. This also helps check that the issue is not with
your own code.

	Describe what actually happened. Include the full traceback if there
was an exception.

	List your Python, Pymem versions. If possible, check
if this issue is already fixed in the latest releases or the latest
code in the repository.

Submitting patches

If there is not an open issue for what you want to submit, prefer
opening one for discussion before working on a PR. You can work on any
issue that doesn’t have an open PR linked to it or a maintainer assigned
to it. These show up in the sidebar. No need to ask if you can work on
an issue that interests you.

Include the following in your patch:

	Include tests if your patch adds or changes code. Make sure the test
fails without your patch.

	Update any relevant docs pages and docstrings.

First time setup

	Download and install the latest version of git [https://git-scm.com/downloads].

	Configure git with your username [https://help.github.com/en/articles/setting-your-username-in-git] and email [https://help.github.com/en/articles/setting-your-commit-email-address-in-git].

$ git config --global user.name 'your name'
$ git config --global user.email 'your email'

	Make sure you have a GitHub account [https://github.com/join].

	Fork Pymem to your GitHub account by clicking the Fork [https://github.com/srounet/pymem/fork] button.

	Clone [https://help.github.com/en/articles/fork-a-repo#step-2-create-a-local-clone-of-your-fork] the main repository locally.

$ git clone https://github.com/srounet/pymem
$ cd pymem

	Add your fork as a remote to push your work to. Replace
{username} with your username. This names the remote “fork”, the
default Pymem remote is “origin”.

git remote add fork https://github.com/{username}/pymem

	Create a virtualenv.

$ python3 -m venv env
$. env/bin/activate

On Windows, activating is different.

> env\Scripts\activate

	Install Pymem in editable mode with development dependencies.

$ pip install -e .

Start coding

	Create a branch to identify the issue you would like to work on. If
you’re submitting a bug or documentation fix, branch off of the
latest “.x” branch.

$ git fetch origin
$ git checkout -b your-branch-name origin/1.1.x

If you’re submitting a feature addition or change, branch off of the
“master” branch.

$ git fetch origin
$ git checkout -b your-branch-name origin/master

	Using your favorite editor, make your changes,
committing as you go [https://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes].

	Include tests that cover any code changes you make. Make sure the
test fails without your patch. Run the tests as described below.

	Push your commits to your fork on GitHub and
create a pull request [https://help.github.com/en/articles/creating-a-pull-request]. Link to the issue being addressed with
fixes #123 in the pull request.

$ git push --set-upstream fork your-branch-name

Running the tests

Run the basic test suite with pytest.

$ python -m pytest

This runs the tests for the current environment, which is usually
sufficient. CI will run the full suite when you submit your pull
request.

Running test coverage

Generating a report of lines that do not have test coverage can indicate
where to start contributing. Run pytest using coverage and
generate a report.

$ pip install -r requirements-test.txt
$ python -m pytest --cov=pymem

Building the docs

Build the docs in the docs directory using Sphinx.

$ cd docs/source
$ make clean
$ make html

Open _build/html/index.html in your browser to view the docs.

Read more about Sphinx [https://www.sphinx-doc.org/en/stable/].

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymem	

 	
 	
 pymem.exception	

 	
 	
 pymem.memory	

 	
 	
 pymem.pattern	

 	
 	
 pymem.process	

 	
 	
 pymem.ptypes	

 	
 	
 pymem.ressources.structure	

 	
 	
 pymem.thread	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	allocate() (pymem.Pymem method)

 	
 	allocate_memory() (in module pymem.memory)

B

 	
 	base_address (pymem.Pymem property)

 	
 	base_module() (in module pymem.process)

C

 	
 	check_wow64() (pymem.Pymem method)

 	CLIENT_ID (class in pymem.ressources.structure)

 	close_handle() (in module pymem.process)

 	
 	close_process() (pymem.Pymem method)

 	CouldNotOpenProcess

 	cvalue (pymem.ptypes.RemotePointer property)

D

 	
 	DELETE (pymem.ressources.structure.PROCESS attribute)

E

 	
 	EntryPoint (pymem.ressources.structure.MODULEINFO attribute)

 	enum_process_module() (in module pymem.process)

 	
 	enum_process_thread() (in module pymem.process)

 	EnumProcessModuleEX (class in pymem.ressources.structure)

F

 	
 	FILETIME (class in pymem.ressources.structure)

 	FLOATING_SAVE_AREA (class in pymem.ressources.structure)

 	
 	free() (pymem.Pymem method)

 	free_memory() (in module pymem.memory)

G

 	
 	get_luid() (in module pymem.process)

 	
 	get_process_token() (in module pymem.process)

 	get_python_dll() (in module pymem.process)

I

 	
 	inject_dll() (in module pymem.process)

 	inject_python_interpreter() (pymem.Pymem method)

 	
 	inject_python_shellcode() (pymem.Pymem method)

 	is_64_bit() (in module pymem.process)

L

 	
 	list_modules() (pymem.Pymem method)

 	LIST_MODULES_32BIT (pymem.ressources.structure.EnumProcessModuleEX attribute)

 	LIST_MODULES_64BIT (pymem.ressources.structure.EnumProcessModuleEX attribute)

 	LIST_MODULES_ALL (pymem.ressources.structure.EnumProcessModuleEX attribute)

 	LIST_MODULES_DEFAULT (pymem.ressources.structure.EnumProcessModuleEX attribute)

 	
 	list_processes() (in module pymem.process)

 	lpBaseOfDll (pymem.ressources.structure.MODULEINFO attribute)

 	LPMODULEENTRY32 (in module pymem.ressources.structure)

 	LPSECURITY_ATTRIBUTES (in module pymem.ressources.structure)

 	LUID (class in pymem.ressources.structure)

 	LUID_AND_ATTRIBUTES (class in pymem.ressources.structure)

M

 	
 	main_thread (pymem.Pymem property)

 	main_thread_id (pymem.Pymem property)

 	MEM_DECOMMIT (pymem.ressources.structure.MEMORY_STATE attribute)

 	MEM_FREE (pymem.ressources.structure.MEMORY_STATE attribute)

 	MEM_IMAGE (pymem.ressources.structure.MEMORY_TYPES attribute)

 	MEM_MAPPED (pymem.ressources.structure.MEMORY_TYPES attribute)

 	MEM_PRIVATE (pymem.ressources.structure.MEMORY_TYPES attribute)

 	MEM_RELEASE (pymem.ressources.structure.MEMORY_STATE attribute)

 	MEM_RESERVE (pymem.ressources.structure.MEMORY_STATE attribute)

 	MEMORY_BASIC_INFORMATION (in module pymem.ressources.structure)

 	MEMORY_BASIC_INFORMATION32 (class in pymem.ressources.structure)

 	MEMORY_BASIC_INFORMATION64 (class in pymem.ressources.structure)

 	MEMORY_PROTECTION (class in pymem.ressources.structure)

 	MEMORY_STATE (class in pymem.ressources.structure)

 	
 	MEMORY_TYPES (class in pymem.ressources.structure)

 	MemoryReadError

 	MemoryWriteError

 	
 module

 	pymem

 	pymem.exception

 	pymem.memory

 	pymem.pattern

 	pymem.process

 	pymem.ptypes

 	pymem.ressources.structure

 	pymem.thread

 	module_from_name() (in module pymem.process)

 	ModuleEntry32 (class in pymem.ressources.structure)

 	MODULEINFO (class in pymem.ressources.structure)

N

 	
 	NT_TIB (class in pymem.ressources.structure)

O

 	
 	open() (in module pymem.process)

 	open_main_thread() (in module pymem.process)

 	
 	open_process_from_id() (pymem.Pymem method)

 	open_process_from_name() (pymem.Pymem method)

 	open_thread() (in module pymem.process)

P

 	
 	PAGE_EXECUTE_READWRITE (pymem.ressources.structure.MEMORY_PROTECTION attribute)

 	pattern_scan_module() (in module pymem.pattern)

 	PROCESS (class in pymem.ressources.structure)

 	PROCESS_ALL_ACCESS (pymem.ressources.structure.PROCESS attribute)

 	process_base (pymem.Pymem property)

 	PROCESS_CREATE_PROCESS (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_CREATE_THREAD (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_DUP_HANDLE (pymem.ressources.structure.PROCESS attribute)

 	process_from_id() (in module pymem.process)

 	process_from_name() (in module pymem.process)

 	PROCESS_SET_INFORMATION (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_SET_QUOTA (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_SUSPEND_RESUME (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_TERMINATE (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_VM_OPERATION (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_VM_READ (pymem.ressources.structure.PROCESS attribute)

 	PROCESS_VM_WRITE (pymem.ressources.structure.PROCESS attribute)

 	ProcessEntry32 (class in pymem.ressources.structure)

 	ProcessError

 	ProcessNotFound

 	PTOKEN_PRIVILEGES (in module pymem.ressources.structure)

 	
 	
 pymem

 	module

 	Pymem (class in pymem)

 	
 pymem.exception

 	module

 	
 pymem.memory

 	module

 	
 pymem.pattern

 	module

 	
 pymem.process

 	module

 	
 pymem.ptypes

 	module

 	
 pymem.ressources.structure

 	module

 	
 pymem.thread

 	module

 	PymemAlignmentError

 	PymemError

 	PymemMemoryError

 	PymemTypeError

R

 	
 	read_bool() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_bytes() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_char() (in module pymem.memory)

 	(pymem.Pymem method)

 	READ_CONTROL (pymem.ressources.structure.PROCESS attribute)

 	read_double() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_float() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_int() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_long() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_longlong() (in module pymem.memory)

 	(pymem.Pymem method)

 	
 	read_short() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_string() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_uchar() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_uint() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_ulong() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_ulonglong() (in module pymem.memory)

 	(pymem.Pymem method)

 	read_ushort() (in module pymem.memory)

 	(pymem.Pymem method)

 	RemotePointer (class in pymem.ptypes)

S

 	
 	scan_pattern_page() (in module pymem.pattern)

 	SE_TOKEN_PRIVILEGE (class in pymem.ressources.structure)

 	SECURITY_ATTRIBUTES (class in pymem.ressources.structure)

 	set_debug_privilege() (in module pymem.process)

 	SizeOfImage (pymem.ressources.structure.MODULEINFO attribute)

 	
 	SMALL_TEB (class in pymem.ressources.structure)

 	STANDARD_RIGHTS_REQUIRED (pymem.ressources.structure.PROCESS attribute)

 	start_thread() (pymem.Pymem method)

 	SYNCHRONIZE (pymem.ressources.structure.PROCESS attribute)

 	SYSTEM_INFO (class in pymem.ressources.structure)

T

 	
 	Thread (class in pymem.thread)

 	THREAD_BASIC_INFORMATION (class in pymem.ressources.structure)

 	ThreadContext (class in pymem.ressources.structure)

 	
 	ThreadEntry32 (class in pymem.ressources.structure)

 	TIB_UNION (class in pymem.ressources.structure)

 	TOKEN (class in pymem.ressources.structure)

 	TOKEN_PRIVILEGES (class in pymem.ressources.structure)

V

 	
 	value (pymem.ptypes.RemotePointer property)

 	
 	virtual_query() (in module pymem.memory)

W

 	
 	WinAPIError

 	with_traceback() (pymem.exception.CouldNotOpenProcess method)

 	(pymem.exception.MemoryReadError method)

 	(pymem.exception.MemoryWriteError method)

 	(pymem.exception.ProcessError method)

 	(pymem.exception.ProcessNotFound method)

 	(pymem.exception.PymemAlignmentError method)

 	(pymem.exception.PymemError method)

 	(pymem.exception.PymemMemoryError method)

 	(pymem.exception.PymemTypeError method)

 	(pymem.exception.WinAPIError method)

 	write_bool() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_bytes() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_char() (in module pymem.memory)

 	(pymem.Pymem method)

 	WRITE_DAC (pymem.ressources.structure.PROCESS attribute)

 	write_double() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_float() (in module pymem.memory)

 	(pymem.Pymem method)

 	
 	write_int() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_long() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_longlong() (in module pymem.memory)

 	(pymem.Pymem method)

 	WRITE_OWNER (pymem.ressources.structure.PROCESS attribute)

 	write_short() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_string() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_uchar() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_uint() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_ulong() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_ulonglong() (in module pymem.memory)

 	(pymem.Pymem method)

 	write_ushort() (in module pymem.memory)

 	(pymem.Pymem method)

_static/file.png

_images/csgo_esp.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Pymem’s documentation!

 		
 Foreword

 		
 Why Pymem ?

 		
 Pymem history

 		
 Why and when using Pymem

 		
 Installation

 		
 Path

 		
 Virtual environments

 		
 Create an environment

 		
 Activate the environment

 		
 Install Pymem

 		
 Quickstart

 		
 A Minimal Application

 		
 Tutorials

 		
 Listing process modules

 		
 Injecting a python interpreter into any process

 		
 Examples from the community

 		
 External glow ESP for CS:GO

 		
 Warning

 		
 Snippet

 		
 AssaultCube External ESP (Pygame, Pymem)

 		
 Warning

 		
 Snippet

 		
 Video

 		
 CS:GO Esp

 		
 Warning

 		
 Snippet

 		
 Screenshot

 		
 No flash cheat for CS:GO

 		
 Warning

 		
 Snippet

 		
 Auto bunny hopper for CS:GO

 		
 Warning

 		
 Snippet

 		
 Trigger bot for CS:GO

 		
 Warning

 		
 Snippet

 		
 Common issues

 		
 API

 		
 Pymem

 		
 Structures

 		
 Pattern

 		
 Process

 		
 Ptypes

 		
 Thread

 		
 Memory

 		
 Exceptions

 		
 License

 		
 How to contribute to Pymem

 		
 Support questions

 		
 Reporting issues

 		
