
pymem Documentation
Release alpha

Author

May 27, 2023

CONTENTS

1 User’s Guide 3

2 API Reference 15

3 Additional Notes 49

Python Module Index 53

Index 55

i

ii

pymem Documentation, Release alpha

Welcome to Pymem’s documentation. Get started with Installation and then get an overview with the Quickstart.
There is also a more detailed Tutorials section that shows how to write small software with Pymem. The rest of the
docs describe each component of Pymem in detail, with a full reference in the API section.

Except for running tests or buliding the documentation, Pymem does not require any library it only manipulate ctypes
and more precisely WinDLL.

The structure of this documentation is based on Flask.

CONTENTS 1

https://docs.python.org/3.6/library/ctypes.html
https://docs.python.org/3.6/library/ctypes.html?highlight=ctypes%20windll#ctypes.WinDLL
https://flask.palletsprojects.com/

pymem Documentation, Release alpha

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

This part of the documentation, which is mostly prose, begins with some background information about Pymem, then
focuses on step-by-step instructions for reversing with Pymem.

1.1 Foreword

Read this before you get started with Pymem. This hopefully answers some questions about the purpose and goals of
the project, and then why you should and should not be using it.

1.1.1 Why Pymem ?

I decided to build pymem after some reading of the wonderfull book Gray Hat Python by Justin Seitz, which I rec-
ommend as a first reading before even starting using Pymem. The book covers the win32api and important aspects of
debuggers. As I wanted to learn more on debugging, hooking and the windows API, I figured out that writing a library
was the perfect project.

1.1.2 Pymem history

So back in 2010, with my little knowledge of Python I wrote the first version of this library (which has been entirely
rewritten since). I figured out that most of the resources you can find covering C, C++, C# of the windows API works
“as it” using python ctypes without any effort, so I decided to wrap some of them into Pymem.

In 2015, I decided to rebirth the library, and to rewrite it using python3. The library is a toolbox for process memory
manipulations, it supports memory reads, writes and even assembly injection (thanks to pyfasm).

In 2020, the support for pyfasm was dropped because of its incompatibility with x64 processes. It now includes testing,
and the documentation as been totally rewritten with tutorials.

1.1.3 Why and when using Pymem

Pymem has been built to reverse games such as Worlf of Warcraft, so if you plan to write a bot for this kind of game,
you’re in the right place. You can also use pymem to do injections, assembly, memory pattern search and a lot more.

You should head over the Tutorials section and see what Pymem is capable of!

Continue to Installation, the Quickstart or Tutorials.

3

https://nostarch.com/ghpython.htm
https://docs.python.org/3.6/library/ctypes.html
https://github.com/srounet/pyfasm

pymem Documentation, Release alpha

1.2 Installation

Pymem has no dependencies and works on both x86 and x64 architecture.

You will need Python 3 or newer to get started, so be sure to have an up-to-date Python 3.x installation.

If you are familiar with pyenv, it is highly recommended to sandbox pymem installation within a custom virtualenv.

1.2.1 Path

In order to use all pymem functionalities you have to first make sure that system python directory is configured within
windows system PATH.

In a PowerShell window type:

$env:PATH

This PATH should contain the directory where python is installed system wide or at least have access to pythonXX.dll
If you don’t find python in your PATH, then it is recommended to add it.

- Open the Start Search, type in "env", and choose "Edit the system environment variables
→˓"
- Click the "Environment Variables..." button
- Under the "System Variables" section (the lower half), find the row with "Path" in the␣
→˓first column, and click edit.
- The "Edit environment variable" UI will appear. Here, you can click "New" and type in␣
→˓the new path you want to add.
- Add your python path and close the windows (something like: C:\Users\xxx\AppData\Local\
→˓Programs\Python\Python38)

1.2.2 Virtual environments

Use a virtual environment to manage the dependencies for your project, both in development and in production.

What problem does a virtual environment solve? The more Python projects you have, the more likely it is that you need
to work with different versions of Python libraries, or even Python itself. Newer versions of libraries for one project
can break compatibility in another project.

Virtual environments are independent groups of Python libraries, one for each project. Packages installed for one
project will not affect other projects or the operating system’s packages.

Python comes bundled with the venv module to create virtual environments.

Create an environment

Create a project folder and a venv folder within:

$ mkdir myproject
$ cd myproject
$ python3 -m venv venv

On Windows:

4 Chapter 1. User’s Guide

https://github.com/pyenv/pyenv

pymem Documentation, Release alpha

$ py -3 -m venv venv

Activate the environment

Before you work on your project, activate the corresponding environment:

$. venv/bin/activate

On Windows:

> venv\Scripts\activate

Your shell prompt will change to show the name of the activated environment.

1.2.3 Install Pymem

Within the activated environment, use the following command to install Pymem:

$ pip install pymem

Pymem is now installed. Check out the Quickstart or go to the Documentation Overview.

1.2.4 Extra Packages

Pymem can use the regex package to speedup memory scans

you can easily install this by adding [speed] to pymem when installing; such as:

$ pip install pymem[speed]

1.3 Quickstart

Eager to get started? This page gives a good introduction to Pymem. Follow Installation to set up a project and install
Pymem first.

1.3.1 A Minimal Application

A minimal Pymem application looks something like this:

from pymem import Pymem

pm = Pymem('notepad.exe')
print('Process id: %s' % pm.process_id)
address = pm.allocate(10)
print('Allocated address: %s' % address)
pm.write_int(address, 1337)
value = pm.read_int(address)
print('Allocated value: %s' % value)
pm.free(address)

1.3. Quickstart 5

https://pypi.org/project/regex/

pymem Documentation, Release alpha

So what did that code do?

1. First we imported the Pymem class. An instance of this class will be our win32api wrapper

2. Next we create an instance of this class. The first argument is the name of the windows process we want to hook
into.

Be aware that after creating an instance of Pymem with the process name as an argument, the process will be
opened with debug mode flags.

3. We then allocate 10 bytes into given _notepad.exe_ process with allocate().

4. For the example we then write an integer with write_int() and read it with read_int().

5. We then free memory from the current opened process at the given address with free().

Save it as hello.py or something similar. Make sure to not call your application pymem.py because this would conflict
with Pymem itself.

To run the application, first start notepad.exe be sure to have pymem installed within your current python environment
and simply execute your script.

$ python hello.py
Process id: 2345
Allocated address: 123456789
Allocated value: 1337

1.4 Tutorials

1.4.1 Listing process modules

Pymem comes with somes process utilities like listing loaded modules.

Here is a snippet that will list loaded process modules

import pymem

pm = pymem.Pymem('python.exe')
modules = list(pm.list_modules())
for module in modules:

print(module.name)

So what did that code do?

1. we hook pymem with python.exe process

2. we retrieve the list of loaded modules

3. for every module listed, we display its name

note: every module is an instance of MODULEINFO()

6 Chapter 1. User’s Guide

pymem Documentation, Release alpha

1.4.2 Injecting a python interpreter into any process

Pymem allow you to inject python.dll into a target process and then map py_run_simple_string with a single call to
inject_python_interpreter().

from pymem import Pymem
import os
import subprocess

notepad = subprocess.Popen(['notepad.exe'])

pm = Pymem('notepad.exe')
pm.inject_python_interpreter()
filepath = os.path.join(os.path.abspath('.'), 'pymem_injection.txt')
filepath = filepath.replace("\\", "\\\\")
shellcode = """
f = open("{}", "w+")
f.write("pymem_injection")
f.close()
""".format(filepath)
pm.inject_python_shellcode(shellcode)
notepad.kill()

So what did that code do?

1. we start notepad process and get its handle

2. we hook pymem with notepad process

3. we call inject_python_interpreter() which will:

• dynamically finds the correct python dll and inject it

• register py_run_simple_string

4. then we inject some python code with inject_python_shellcode() which will:

• VirtualAllocEx some space for the code to be written

• write the actual payload into allocated space

• execute py_run_simple_string so the python code gets interpreted within the notepad process

5. finally we get rid of notepad process

1.5 Examples from the community

No support will be provided for any community related examples.

Here is a list of programs / scripts made by the community:

1.5. Examples from the community 7

pymem Documentation, Release alpha

1.5.1 External glow ESP for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import pymem
import pymem.process

dwEntityList = (0x4D4B104)
dwGlowObjectManager = (0x5292F20)
m_iGlowIndex = (0xA428)
m_iTeamNum = (0xF4)

def main():
print("Diamond has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

while True:
glow_manager = pm.read_int(client + dwGlowObjectManager)

for i in range(1, 32): # Entities 1-32 are reserved for players.
entity = pm.read_int(client + dwEntityList + i * 0x10)

if entity:
entity_team_id = pm.read_int(entity + m_iTeamNum)
entity_glow = pm.read_int(entity + m_iGlowIndex)

if entity_team_id == 2: # Terrorist
pm.write_float(glow_manager + entity_glow * 0x38 + 0x4, float(1))

→˓# R
pm.write_float(glow_manager + entity_glow * 0x38 + 0x8, float(0))

→˓# G
pm.write_float(glow_manager + entity_glow * 0x38 + 0xC, float(0))

→˓# B
pm.write_float(glow_manager + entity_glow * 0x38 + 0x10, float(1))

→˓# Alpha
pm.write_int(glow_manager + entity_glow * 0x38 + 0x24, 1)

→˓# Enable glow

elif entity_team_id == 3: # Counter-terrorist
(continues on next page)

8 Chapter 1. User’s Guide

https://github.com/Snaacky
https://github.com/Snaacky/Diamond

pymem Documentation, Release alpha

(continued from previous page)

pm.write_float(glow_manager + entity_glow * 0x38 + 0x4, float(0))
→˓# R

pm.write_float(glow_manager + entity_glow * 0x38 + 0x8, float(0))
→˓# G

pm.write_float(glow_manager + entity_glow * 0x38 + 0xC, float(1))
→˓# B

pm.write_float(glow_manager + entity_glow * 0x38 + 0x10, float(1))
→˓# Alpha

pm.write_int(glow_manager + entity_glow * 0x38 + 0x24, 1)
→˓# Enable glow

if __name__ == '__main__':
main()

1.5.2 AssaultCube External ESP (Pyray, Pymem)

An external AssaultCube ESP from qb.

Original source code: link

Warning

This comes, “as it” with no guarantees regarding its standing with any anti-cheat related.

Use this code at your own risk and be aware that using any sort of hack may resolve in having your account banned

Image

1.5.3 CS:GO Esp

No support will be provided for any community related examples.

pSilent, feel free to contact pymem author if you want this example to be removed as we didn’t reached you to
have your authorisation to post this

Credits goes to pSilent

Original post: link

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with any anti-cheat related.

Use this code at your own risk and be aware that using any sort of hack may resolve in having your account banned

1.5. Examples from the community 9

https://github.com/qb-0/
https://github.com/qb-0/Pymem-ACESP
https://guidedhacking.com/members/psilent.122196/
https://guidedhacking.com/threads/pyhack-my-first-and-only-hack-in-python.15057/
https://github.com/somegithubacc/pyhack-v2

pymem Documentation, Release alpha

Snippet

See Original source code above to see the whole source code.

Screenshot

1.5.4 No flash cheat for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import pymem
import pymem.process
import time

dwLocalPlayer = (0xD36B94)
m_flFlashMaxAlpha = (0xA40C)

def main():
print("Emerald has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

while True:
(continues on next page)

10 Chapter 1. User’s Guide

https://github.com/Snaacky
https://github.com/Snaacky/Emerald

pymem Documentation, Release alpha

(continued from previous page)

player = pm.read_int(client + dwLocalPlayer)
if player:

flash_value = player + m_flFlashMaxAlpha
if flash_value:

pm.write_float(flash_value, float(0))
time.sleep(1)

if __name__ == '__main__':
main()

1.5.5 Auto bunny hopper for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import keyboard
import pymem
import pymem.process
import time
from win32gui import GetWindowText, GetForegroundWindow

dwForceJump = (0x51F4D88)
dwLocalPlayer = (0xD36B94)
m_fFlags = (0x104)

def main():
print("Ruby has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

while True:
if not GetWindowText(GetForegroundWindow()) == "Counter-Strike: Global Offensive

→˓":
continue

if keyboard.is_pressed("space"):
force_jump = client + dwForceJump

(continues on next page)

1.5. Examples from the community 11

https://github.com/Snaacky
https://github.com/Snaacky/Ruby

pymem Documentation, Release alpha

(continued from previous page)

player = pm.read_int(client + dwLocalPlayer)
if player:

on_ground = pm.read_int(player + m_fFlags)
if on_ground and on_ground == 257:

pm.write_int(force_jump, 5)
time.sleep(0.08)
pm.write_int(force_jump, 4)

time.sleep(0.002)

if __name__ == '__main__':
main()

1.5.6 Trigger bot for CS:GO

No support will be provided for any community related examples.

Credits goes to Snacky.

Original source code: github

Warning

This comes, “as it” with no guarantees regarding its standing with VAC.

Use this code at your own risk and be aware that using any sort of hack will resolve in having your steam_id banned

Snippet

import keyboard
import pymem
import pymem.process
import time
from win32gui import GetWindowText, GetForegroundWindow

dwEntityList = (0x4D4B104)
dwForceAttack = (0x317C6EC)
dwLocalPlayer = (0xD36B94)
m_fFlags = (0x104)
m_iCrosshairId = (0xB3D4)
m_iTeamNum = (0xF4)

trigger_key = "shift"

def main():
print("Sapphire has launched.")
pm = pymem.Pymem("csgo.exe")
client = pymem.process.module_from_name(pm.process_handle, "client.dll").lpBaseOfDll

(continues on next page)

12 Chapter 1. User’s Guide

https://github.com/Snaacky
https://github.com/Snaacky/Sapphire

pymem Documentation, Release alpha

(continued from previous page)

while True:
if not keyboard.is_pressed(trigger_key):

time.sleep(0.1)

if not GetWindowText(GetForegroundWindow()) == "Counter-Strike: Global Offensive
→˓":

continue

if keyboard.is_pressed(trigger_key):
player = pm.read_int(client + dwLocalPlayer)
entity_id = pm.read_int(player + m_iCrosshairId)
entity = pm.read_int(client + dwEntityList + (entity_id - 1) * 0x10)

entity_team = pm.read_int(entity + m_iTeamNum)
player_team = pm.read_int(player + m_iTeamNum)

if entity_id > 0 and entity_id <= 64 and player_team != entity_team:
pm.write_int(client + dwForceAttack, 6)

time.sleep(0.006)

if __name__ == '__main__':
main()

1.6 Common issues

Here is a non-exhaustive list of common issues related to pymem usage:

• The token does not have the specified privilege

Pymem requires that the terminal or interpreter be ran with administrator privileges

• AttributeError: ‘NoneType’ object has no attribute or any other Python error

Make sure you are running at least Python 3.5 (earlier versions are unsupported, future versions may have breaking
issues)

1.6. Common issues 13

pymem Documentation, Release alpha

14 Chapter 1. User’s Guide

CHAPTER

TWO

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API

This part of the documentation covers all the methods of Pymem. For parts where Pymem depends on external dlls,
we document the most important right here and provide links to the canonical documentation.

2.1.1 Pymem

class pymem.Pymem(process_name: Optional[Union[str, int]] = None, exact_match: bool = False, ignore_case:
bool = True)

Initialize the Pymem class. If process_name is given, will open the process and retrieve a handle over it.

Parameters

• process_name – The name or process id of the process to be opened

• exact_match – Defaults to False, is the full name match or just part of it expected?

• ignore_case – Default to True, should ignore process name case?

allocate(size)
Allocate memory into the current opened process.

Parameters size (int) – The size of the region of memory to allocate, in bytes.

Raises

• ProcessError – If there is no process opened

• TypeError – If size is not an integer

Returns The base address of the current process.

Return type int

property base_address
Gets the memory address where the main module was loaded (ie address of exe file in memory)

Raises

• TypeError – If process_id is not an integer

• ProcessError – Could not find process first module address

Returns Address of main module

15

pymem Documentation, Release alpha

Return type int

check_wow64()
Check if a process is running under WoW64.

close_process()
Close the current opened process

Raises ProcessError – If there is no process opened

free(address)
Free memory from the current opened process given an address.

Parameters address (int) – An address of the region of memory to be freed.

Raises

• ProcessError – If there is no process opened

• TypeError – If address is not an integer

inject_python_interpreter(initsigs=1)
Inject python interpreter into target process and call Py_InitializeEx.

inject_python_shellcode(shellcode)
Inject a python shellcode into memory and execute it.

Parameters shellcode (str) – A string with python instructions.

list_modules()
List a process loaded modules.

Returns List of process loaded modules

Return type list(MODULEINFO)

property main_thread
Retrieve ThreadEntry32 of main thread given its creation time.

Raises ProcessError – If there is no process opened or could not list process thread

Returns Process main thread

Return type Thread

property main_thread_id
Retrieve th32ThreadID from main thread

Raises ProcessError – If there is no process opened or could not list process thread

Returns Main thread identifier

Return type int

open_process_from_id(process_id)
Open process given its name and stores the handle into self.process_handle.

Parameters process_id (int) – The unique process identifier

Raises

• TypeError – If process identifier is not an integer

• CouldNotOpenProcess – If process cannot be opened

open_process_from_name(process_name: str, exact_match: bool = False, ignore_case: bool = True)
Open process given its name and stores the handle into process_handle

16 Chapter 2. API Reference

pymem Documentation, Release alpha

Parameters

• process_name – The name of the process to be opened

• exact_match – Defaults to False, is the full name match or just part of it expected?

• ignore_case – Default to True, should ignore process name case?

Raises

• TypeError – If process name is not valid or search parameters are of the wrong type

• ProcessNotFound – If process name is not found

• CouldNotOpenProcess – If process cannot be opened

pattern_scan_all(pattern, *, return_multiple=False)
Scan the entire address space of this process for a regex pattern

Parameters

• pattern (bytes) – The regex pattern to search for

• return_multiple (bool) – If multiple results should be returned

Returns Memory address of given pattern, or None if one was not found or a list of found ad-
dresses in return_multiple is True

Return type int, list, optional

pattern_scan_module(pattern, module, *, return_multiple=False)
Scan a module for a regex pattern

Parameters

• pattern (bytes) – The regex pattern to search for

• module (str, MODULEINFO) – Name of the module to search for, or a MODULEINFO
object

• return_multiple (bool) – If multiple results should be returned

Returns Memory address of given pattern, or None if one was not found or a list of found ad-
dresses in return_multiple is True

Return type int, list, optional

property process_base
Lookup process base Module.

Raises

• TypeError – process_id is not an integer

• ProcessError – Could not find process first module address

Returns Base module information

Return type MODULEINFO

read_bool(address)
Reads 1 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

2.1. API 17

pymem Documentation, Release alpha

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type bool

read_bytes(address, length)
Reads bytes from an area of memory in a specified process.

Parameters

• address (int) – An address of the region of memory to be read.

• length (int) – Number of bytes to be read

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

Returns the raw value read

Return type bytes

read_char(address)
Reads 1 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type str

read_ctype(address, ctype, *, get_py_value=True, raw_bytes=False)
Read a ctype basic type or structure from <address>

Parameters

• address (int) – An address of the region of memory to be read.

• ctype – A simple ctypes type or structure

• get_py_value (bool) – If the corrosponding python type should be used instead of re-
turning the ctype This is automatically set to False for ctypes.Structure or ctypes.Array
instances

• raw_bytes (bool) – If we should return the raw ctype bytes

Raises WinAPIError – If ReadProcessMemory failed

Returns Return will be either the ctype with the read value if get_py_value is false or the cor-
ropsonding python type

Return type Any

read_double(address)
Reads 8 byte from an area of memory in a specified process.

18 Chapter 2. API Reference

pymem Documentation, Release alpha

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_float(address)
Reads 4 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type float

read_int(address)
Reads 4 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_long(address)
Reads 4 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_longlong(address)
Reads 8 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

2.1. API 19

pymem Documentation, Release alpha

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_short(address)
Reads 2 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_string(address, byte=50)
Reads n byte from an area of memory in a specified process.

Parameters

• address (int) – An address of the region of memory to be read.

• byte (int) – Amount of bytes to be read

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type str

read_uchar(address)
Reads 1 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type str

read_uint(address)
Reads 4 byte from an area of memory in a specified process.

20 Chapter 2. API Reference

pymem Documentation, Release alpha

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_ulong(address)
Reads 4 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_ulonglong(address)
Reads 8 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

read_ushort(address)
Reads 2 byte from an area of memory in a specified process.

Parameters address (int) – An address of the region of memory to be read.

Raises

• ProcessError – If there is no opened process

• MemoryReadError – If ReadProcessMemory failed

• TypeError – If address is not a valid integer

Returns returns the value read

Return type int

start_thread(address, params=None)
Create a new thread within the current debugged process.

Parameters

2.1. API 21

pymem Documentation, Release alpha

• address (int) – An address from where the thread starts

• params (int) – An optional address with thread parameters

Returns The new thread identifier

Return type int

write_bool(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (bool) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_bytes(address, value, length)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (bytes) – the value to be written

• length (int) – Number of bytes to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_char(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (str) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_ctype(address, ctype)
Write a ctype basic type or structure to <address>

Parameters

• address (int) – An address of the region of memory to be written.

• ctype – A simple ctypes type or structure

22 Chapter 2. API Reference

pymem Documentation, Release alpha

Raises WinAPIError – If WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

write_double(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (float) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_float(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (float) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_int(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_long(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

2.1. API 23

pymem Documentation, Release alpha

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_longlong(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_short(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_string(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (str) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_uchar(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

24 Chapter 2. API Reference

pymem Documentation, Release alpha

• TypeError – If address is not a valid integer

write_uint(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_ulong(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_ulonglong(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

write_ushort(address, value)
Write value to the given address into the current opened process.

Parameters

• address (int) – An address of the region of memory to be written.

• value (int) – the value to be written

Raises

• ProcessError – If there is no opened process

• MemoryWriteError – If WriteProcessMemory failed

• TypeError – If address is not a valid integer

2.1. API 25

pymem Documentation, Release alpha

2.1.2 Structures

class pymem.ressources.structure.CLIENT_ID

class pymem.ressources.structure.EnumProcessModuleEX
The following are the EnumProcessModuleEX flags

https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms682633(v=vs.85).aspx

LIST_MODULES_32BIT = 1
List the 32-bit modules

LIST_MODULES_64BIT = 2
List the 64-bit modules.

LIST_MODULES_ALL = 3
List all modules.

LIST_MODULES_DEFAULT = 0
Use the default behavior.

class pymem.ressources.structure.FILETIME

class pymem.ressources.structure.FLOATING_SAVE_AREA
Undocumented ctypes.Structure used for ThreadContext.

pymem.ressources.structure.LPMODULEENTRY32
alias of pymem.ressources.structure.LP_ModuleEntry32

pymem.ressources.structure.LPSECURITY_ATTRIBUTES
alias of pymem.ressources.structure.LP_SECURITY_ATTRIBUTES

class pymem.ressources.structure.LUID

class pymem.ressources.structure.LUID_AND_ATTRIBUTES

pymem.ressources.structure.MEMORY_BASIC_INFORMATION
alias of pymem.ressources.structure.MEMORY_BASIC_INFORMATION64

class pymem.ressources.structure.MEMORY_BASIC_INFORMATION32
Contains information about a range of pages in the virtual address space of a process. The VirtualQuery and
VirtualQueryEx functions use this structure.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775(v=vs.85).aspx

class pymem.ressources.structure.MEMORY_BASIC_INFORMATION64

class pymem.ressources.structure.MEMORY_PROTECTION(value)
The following are the memory-protection options; you must specify one of the following values when allocating
or protecting a page in memory https://msdn.microsoft.com/en-us/library/windows/desktop/aa366786(v=vs.85)
.aspx

PAGE_EXECUTE_READWRITE = 64
Enables execute, read-only, or read/write access to the committed region of pages.

class pymem.ressources.structure.MEMORY_STATE(value)
The type of memory allocation

MEM_DECOMMIT = 16384
Decommits the specified region of committed pages. After the operation, the pages are in the reserved state.
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx

MEM_FREE = 65536
XXX

26 Chapter 2. API Reference

https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms682633(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366786(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366786(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx

pymem Documentation, Release alpha

MEM_RELEASE = 32768
Releases the specified region of pages. After the operation, the pages are in the free state. https://msdn.
microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx

MEM_RESERVE = 8192
XXX

class pymem.ressources.structure.MEMORY_TYPES(value)
An enumeration.

MEM_IMAGE = 16777216
XXX

MEM_MAPPED = 262144
XXX

MEM_PRIVATE = 131072
XXX

class pymem.ressources.structure.MODULEINFO(handle)
Contains the module load address, size, and entry point.

lpBaseOfDll

SizeOfImage

EntryPoint

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684229(v=vs.85).aspx

class pymem.ressources.structure.ModuleEntry32(*args, **kwds)
Describes an entry from a list of the modules belonging to the specified process.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684225%28v=vs.85%29.aspx

class pymem.ressources.structure.NT_TIB

class pymem.ressources.structure.PROCESS(value)
Process manipulation flags

DELETE = 65536
Required to delete the object.

PROCESS_ALL_ACCESS = 2035711
All possible access rights for a process object.

PROCESS_CREATE_PROCESS = 128
Required to create a process.

PROCESS_CREATE_THREAD = 2
Required to create a thread.

PROCESS_DUP_HANDLE = 64
PROCESS_DUP_HANDLE

PROCESS_SET_INFORMATION = 512
Required to set certain information about a process, such as its priority class (see SetPriorityClass).

PROCESS_SET_QUOTA = 256
Required to set memory limits using SetProcessWorkingSetSize.

PROCESS_SUSPEND_RESUME = 2048
Required to suspend or resume a process.

2.1. API 27

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684229(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684225%28v=vs.85%29.aspx

pymem Documentation, Release alpha

PROCESS_TERMINATE = 1
Required to terminate a process using TerminateProcess.

PROCESS_VM_OPERATION = 8
Required to perform an operation on the address space of a process (see VirtualProtectEx and WritePro-
cessMemory).

PROCESS_VM_READ = 16
Required to read memory in a process using ReadProcessMemory.

PROCESS_VM_WRITE = 32
Required to write to memory in a process using WriteProcessMemory.

READ_CONTROL = 131072
Required to read information in the security descriptor for the object, not including the information in the
SACL. To read or write the SACL, you must request the ACCESS_SYSTEM_SECURITY access right. For
more information see SACL Access Right.

STANDARD_RIGHTS_REQUIRED = 983040
Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access.

SYNCHRONIZE = 1048576
Required to wait for the process to terminate using the wait functions.

WRITE_DAC = 262144
Required to modify the DACL in the security descriptor for the object.

WRITE_OWNER = 524288
Required to change the owner in the security descriptor for the object.

pymem.ressources.structure.PTOKEN_PRIVILEGES
alias of pymem.ressources.structure.LP_TOKEN_PRIVILEGES

class pymem.ressources.structure.ProcessEntry32(*args, **kwds)
Describes an entry from a list of the processes residing in the system address space when a snapshot was taken.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684839(v=vs.85).aspx

class pymem.ressources.structure.SECURITY_ATTRIBUTES
The SECURITY_ATTRIBUTES structure contains the security descriptor for an object and specifies whether
the handle retrieved by specifying this structure is inheritable.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379560(v=vs.85).aspx

class pymem.ressources.structure.SE_TOKEN_PRIVILEGE(value)
An access token contains the security information for a logon session. The system creates an access token when
a user logs on, and every process executed on behalf of the user has a copy of the token.

class pymem.ressources.structure.SMALL_TEB

class pymem.ressources.structure.SYSTEM_INFO
Contains information about the current computer system. This includes the architecture and type of the processor,
the number of processors in the system, the page size, and other such information.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958(v=vs.85).aspx

class pymem.ressources.structure.THREAD_BASIC_INFORMATION

class pymem.ressources.structure.TIB_UNION

class pymem.ressources.structure.TOKEN(value)
An enumeration.

class pymem.ressources.structure.TOKEN_PRIVILEGES

28 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684839(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379560(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724958(v=vs.85).aspx

pymem Documentation, Release alpha

class pymem.ressources.structure.ThreadContext
Represents a thread context

class pymem.ressources.structure.ThreadEntry32(*args, **kwds)
Describes an entry from a list of the threads executing in the system when a snapshot was taken.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686735(v=vs.85).aspx

2.1.3 Pattern

pymem.pattern.pattern_scan_all(handle, pattern, *, return_multiple=False)
Scan the entire address space for a given regex pattern

Parameters

• handle (int) – Handle to an open process

• pattern (bytes) – A regex bytes pattern to search for

• return_multiple (bool) – If multiple results should be returned

Returns Memory address of given pattern, or None if one was not found or a list of found addresses
in return_multiple is True

Return type int, list, optional

pymem.pattern.pattern_scan_module(handle, module, pattern, *, return_multiple=False)
Given a handle over an opened process and a module will scan memory after a byte pattern and return its corre-
sponding memory address.

Parameters

• handle (int) – Handle to an open object

• module (MODULEINFO) – An instance of a given module

• pattern (bytes) – A regex byte pattern to search for

• return_multiple (bool) – If multiple results should be returned instead of stopping on
the first

Returns Memory address of given pattern, or None if one was not found or a list of found addresses
in return_multiple is True

Return type int, list, optional

Examples

>>> pm = pymem.Pymem("Notepad.exe")
Here the "." means that the byte can be any byte; a "wildcard"
also note that this pattern may be outdated
>>> bytes_pattern = b".\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00" \
... b"\x00\x00\x00\x00\x00\x00..\x00\x00..\x00\x00\x64\x04"
>>> module_notepad = pymem.process.module_from_name(pm.process_handle, "Notepad.exe
→˓")
>>> character_count_address = pymem.pattern.pattern_scan_module(pm.process_handle,␣
→˓module_notepad, bytes_pattern)

2.1. API 29

https://msdn.microsoft.com/en-us/library/windows/desktop/ms686735(v=vs.85).aspx

pymem Documentation, Release alpha

pymem.pattern.scan_pattern_page(handle, address, pattern, *, return_multiple=False)
Search a byte pattern given a memory location. Will query memory location information and search over until
it reaches the length of the memory page. If nothing is found the function returns the next page location.

Parameters

• handle (int) – Handle to an open object

• address (int) – An address to search from

• pattern (bytes) – A regex byte pattern to search for

• return_multiple (bool) – If multiple results should be returned instead of stopping on
the first

Returns

next_region, found address

found address may be None if one was not found, or we didn’t have permission to scan the region

if return_multiple is True found address will instead be a list of found addresses or an empty list
if no results

Return type tuple

Examples

>>> pm = pymem.Pymem("Notepad.exe")
>>> address_reference = 0x7ABC00001
Here the "." means that the byte can be any byte; a "wildcard"
also note that this pattern may be outdated
>>> bytes_pattern = b".\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00" \
... b"\x00\x00\x00\x00\x00\x00..\x00\x00..\x00\x00\x64\x04"
>>> character_count_address = pymem.pattern.scan_pattern_page(pm.process_handle,␣
→˓address_reference, bytes_pattern)

2.1.4 Process

pymem.process.base_module(handle)
Returns process base module

Parameters handle (int) – A valid handle to an open object

Returns The base module of the process

Return type MODULEINFO

pymem.process.close_handle(handle)
Closes an open object handle. https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211%28v=vs.
85%29.aspx

Parameters handle (int) – A valid handle to an open object

Returns If the closure succeeded

Return type bool

30 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211%28v=vs.85%29.aspx

pymem Documentation, Release alpha

pymem.process.enum_process_module(handle)
List and retrieves the base names of the specified loaded module within a process https://msdn.microsoft.com/
en-us/library/windows/desktop/ms682633(v=vs.85).aspx https://msdn.microsoft.com/en-us/library/windows/
desktop/ms683196(v=vs.85).aspx

Parameters handle (int) – Handle of the process to enum the modules of

Returns The process’s modules

Return type list[MODULEINFO]

pymem.process.enum_process_thread(process_id)
List all threads of given processes_id

Parameters process_id (int) – Identifier of the process to enum the threads of

Returns The process’s threads

Return type list[ThreadEntry32]

pymem.process.get_luid(name)
Get the LUID for the SeCreateSymbolicLinkPrivilege

pymem.process.get_process_token()
Get the current process token

pymem.process.get_python_dll(version)
Given a python dll version will find its path using the current process as a placeholder

Parameters version (str) – A string representation of python version as a dll (python38.dll)

Returns The full path of dll

Return type str

pymem.process.inject_dll(handle, filepath)
Inject a dll into opened process.

Parameters

• handle (int) – Handle to an open object

• filepath (bytes) – Dll to be injected filepath

Returns The address of injected dll

Return type DWORD

pymem.process.is_64_bit(handle)
Determines whether the specified process is running under WOW64 (emulation).

Parameters handle (int) – Handle of the process to check wow64 status of

Returns If the process is running under wow64

Return type bool

pymem.process.list_processes()
List all processes https://msdn.microsoft.com/en-us/library/windows/desktop/ms682489%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684834%28v=vs.85%29.aspx

Returns A list of open process entries

Return type list[ProcessEntry32]

pymem.process.module_from_name(process_handle, module_name)
Retrieve a module loaded by given process.

2.1. API 31

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682633(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682633(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683196(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683196(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682489%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684834%28v=vs.85%29.aspx

pymem Documentation, Release alpha

Parameters

• process_handle (int) – Handle to the process to get the module from

• module_name (str) – Name of the module to get

Returns The retrieved module

Return type MODULEINFO

Examples

>>> d3d9 = module_from_name(process_handle, 'd3d9')

pymem.process.open(process_id, debug=True, process_access=None)
Open a process given its process_id. By default, the process is opened with full access and in debug mode.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320%28v=vs.85%29.aspx https:
//msdn.microsoft.com/en-us/library/windows/desktop/aa379588%28v=vs.85%29.aspx

Parameters

• process_id (int) – The identifier of the process to be opened

• debug (bool) – If the process should be opened in debug mode

• process_access (pymem.ressources.structure.PROCESS) – Desired access level, de-
faulting to all access

Returns A handle to the opened process

Return type int

pymem.process.open_main_thread(process_id)
List given process threads and return a handle to first created one.

Parameters process_id (int) – The identifier of the process

Returns A handle to the main thread

Return type int

pymem.process.open_thread(thread_id, thread_access=None)
Opens an existing thread object. https://msdn.microsoft.com/en-us/library/windows/desktop/ms684335%28v=
vs.85%29.aspx

Parameters

• thread_id (int) – The identifier of the thread to be opened

• thread_access (int) – Desired access level, defaulting to all access

Returns A handle to the opened thread

Return type int

pymem.process.process_from_id(process_id)
Open a process given its name.

Parameters process_id (int) – The identifier of the process to be opened

Returns The process entry of the opened process

Return type ProcessEntry32

32 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379588%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379588%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684335%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684335%28v=vs.85%29.aspx

pymem Documentation, Release alpha

pymem.process.process_from_name(name: str, exact_match: bool = False, ignore_case: bool = True)
Open a process given its name.

Parameters

• name – The name of the process to be opened

• exact_match – Defaults to False, is the full name match or just part of it expected?

• ignore_case – Default to True, should ignore process name case?

Returns The process entry of the opened process

Return type ProcessEntry32

pymem.process.set_debug_privilege(lpszPrivilege, bEnablePrivilege)
Leverage current process privileges.

Parameters

• lpszPrivilege (str) – Privilege name

• bEnablePrivilege (bool) – Enable privilege

Returns If privileges have been leveraged

Return type bool

2.1.5 Ptypes

class pymem.ptypes.RemotePointer(handle, v, endianess='little-endian')
Pointer capable of reading the value mapped into another process memory.

Parameters

• handle (int) – Handle to the process

• v (int, RemotePointer, any ctypes type) – The address value

• endianess (str) – The endianess of the remote pointer, defaulting to little-endian

Raises PymemAlignmentError – If endianess is not a valid alignment

Notes

The bool of RemotePointer checks if the internal value is 0

property cvalue
Reads targeted process memory and returns the value pointed by the given address.

Returns The value pointed at by this remote pointer as a ctypes type instance

Return type a ctypes type

property value
Reads targeted process memory and returns the value pointed by the given address.

Returns The value pointed at by this remote pointer

Return type int

2.1. API 33

pymem Documentation, Release alpha

2.1.6 Thread

class pymem.thread.Thread(process_handle, th_entry_32)
Provides basic thread information such as TEB.

Parameters

• process_handle (int) – A handle to an opened process

• th_entry_32 (ThreadEntry32) – Target thread’s entry object

2.1.7 Memory

pymem.memory.allocate_memory(handle, size, allocation_type=None, protection_type=None)
Reserves or commits a region of memory within the virtual address space of a specified process. The function
initializes the memory it allocates to zero, unless MEM_RESET is used.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• size (int) – The size of the region of memory to allocate, in bytes.

• allocation_type (MEMORY_STATE) – The type of memory allocation.

• protection_type (MEMORY_PROTECTION) – The memory protection for the region of
pages to be allocated.

Returns The address of the allocated region of pages.

Return type int

pymem.memory.free_memory(handle, address, free_type=None)
Releases, decommits, or releases and decommits a region of memory within the virtual address space of a spec-
ified process.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be freed.

• free_type (MEMORY_PROTECTION) – The type of free operation.

Returns A boolean indicating if the call was a success.

Return type int

pymem.memory.read_bool(handle, address)
Reads 1 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

34 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366890%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366894%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as a bool

Return type bool

pymem.memory.read_bytes(handle, address, byte)
Reads data from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

• byte (int) – Number of bytes to be read

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as bytes

Return type bytes

pymem.memory.read_char(handle, address)
Reads 1 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as a string

Return type str

pymem.memory.read_ctype(handle, address, ctype, *, get_py_value=True, raw_bytes=False)
Read a ctype basic type or structure from <address>

2.1. API 35

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

pymem Documentation, Release alpha

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

• ctype – A simple ctypes type or structure

• get_py_value (bool) – If the corrosponding python type should be used instead of return-
ing the ctype This is automatically set to False for ctypes.Structure or ctypes.Array instances

• raw_bytes (bool) – If we should return the raw ctype bytes

Raises WinAPIError – If ReadProcessMemory failed

Returns Return will be either the ctype with the read value if get_py_value is false or the corrop-
sonding python type

Return type Any

pymem.memory.read_double(handle, address)
Reads 8 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as a float

Return type float

pymem.memory.read_float(handle, address)
Reads 4 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as a float

36 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

pymem Documentation, Release alpha

Return type float

pymem.memory.read_int(handle, address)
Reads 4 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_long(handle, address)
Reads 4 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_longlong(handle, address)
Reads 8 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

2.1. API 37

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_short(handle, address)
Reads 2 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_string(handle, address, byte=50)
Reads n byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

• byte (int, default=50) – max number of bytes to check for null terminator, defaults to
50

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as a string

Return type str

pymem.memory.read_uchar(handle, address)
Reads 1 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

38 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_uint(handle, address, is_64=False)
Reads 4 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

• is_64 (bool) – Should we unpack as big-endian

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_ulong(handle, address)
Reads 4 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

2.1. API 39

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

pymem Documentation, Release alpha

pymem.memory.read_ulonglong(handle, address)
Reads 8 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.read_ushort(handle, address)
Reads 2 byte from an area of memory in a specified process. The entire area to be read must be accessible or the
operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be read.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – If ReadProcessMemory failed

Returns The raw value read as an int

Return type int

pymem.memory.virtual_query(handle, address)
Retrieves information about a range of pages within the virtual address space of a specified process.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775(v=vs.85).aspx https://msdn.microsoft.
com/en-us/library/windows/desktop/aa366907(v=vs.85).aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of to be read.

Returns A memory basic information object

Return type MEMORY_BASIC_INFORMATION

40 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680553%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366775(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366907(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366907(v=vs.85).aspx

pymem Documentation, Release alpha

pymem.memory.write_bool(handle, address, value)
Writes 1 byte to an area of memory in a specified process. The entire area to be written to must be accessible or
the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (bool) – A boolean representing the value to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_bytes(handle, address, data, length)
Writes data to an area of memory in a specified process. The entire area to be written to must be accessible or
the operation fails.

Casts address using ctypes.c_char_p.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• data (void) – A buffer that contains data to be written

• length (int) – Number of bytes to be written.

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_char(handle, address, value)
Writes 1 byte to an area of memory in a specified process. The entire area to be written to must be accessible or
the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

2.1. API 41

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• address (int) – An address of the region of memory to be written.

• value (str) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_ctype(handle, address, ctype)
Write a ctype basic type or structure to <address>

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• ctype – A simple ctypes type or structure

Raises WinAPIError – If WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_double(handle, address, value)
Writes 8 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (float) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_float(handle, address, value)
Writes 4 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

42 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (float) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_int(handle, address, value)
Writes 4 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_long(handle, address, value)
Writes 4 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

2.1. API 43

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

pymem Documentation, Release alpha

Return type bool

pymem.memory.write_longlong(handle, address, value)
Writes 8 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_short(handle, address, value)
Writes 2 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_string(handle, address, bytecode)
Writes n bytes of len(bytecode) to an area of memory in a specified process. The entire area to be written to must
be accessible or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

44 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• bytecode (str, bytes) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_uchar(handle, address, value)
Writes 1 byte to an area of memory in a specified process. The entire area to be written to must be accessible or
the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (str) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_uint(handle, address, value)
Writes 4 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_ulong(handle, address, value)
Writes 4 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

2.1. API 45

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

pymem Documentation, Release alpha

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_ulonglong(handle, address, value)
Writes 8 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

pymem.memory.write_ushort(handle, address, value)
Writes 2 bytes to an area of memory in a specified process. The entire area to be written to must be accessible
or the operation fails.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

Parameters

• handle (int) – The handle to a process. The function allocates memory within the virtual
address space of this process. The handle must have the PROCESS_VM_OPERATION
access right.

• address (int) – An address of the region of memory to be written.

• value (int) – A buffer that contains data to be written

Raises

• TypeError – If address is not a valid integer

46 Chapter 2. API Reference

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681674%28v=vs.85%29.aspx

pymem Documentation, Release alpha

• WinAPIError – if WriteProcessMemory failed

Returns A boolean indicating a successful write.

Return type bool

2.1.8 Exceptions

exception pymem.exception.CouldNotOpenProcess(process_id)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.MemoryReadError(address, length, error_code=None)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.MemoryWriteError(address, value, error_code=None)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.ProcessError(message)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.ProcessNotFound(process_name)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.PymemAlignmentError(message)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.PymemError(message)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.PymemMemoryError(message)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.PymemTypeError(message)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception pymem.exception.WinAPIError(error_code)
with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

2.1. API 47

pymem Documentation, Release alpha

48 Chapter 2. API Reference

CHAPTER

THREE

ADDITIONAL NOTES

Design notes, legal information and changelog are here for the interested.

3.1 License

MIT License

Copyright (c) 2020 pymem

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

3.2 How to contribute to Pymem

Thank you for considering contributing to Pymem!

3.2.1 Support questions

Please, don’t use the issue tracker for this. The issue tracker is a tool to address bugs and feature requests in Pymem
itself. Use one of the following resources for questions about using Pymem or issues with your own code:

• The #general channel on our Discord chat: https://discord.gg/xaWNac8

• Ask on Stack Overflow. Search with Google first using: site:stackoverflow.com python pymem
{search term, exception message, etc.}

49

https://discord.gg/xaWNac8
https://stackoverflow.com/questions/tagged/pymem?sort=linked

pymem Documentation, Release alpha

3.2.2 Reporting issues

Include the following information in your post:

• Describe what you expected to happen.

• If possible, include a minimal reproducible example to help us identify the issue. This also helps check that the
issue is not with your own code.

• Describe what actually happened. Include the full traceback if there was an exception.

• List your Python, Pymem versions. If possible, check if this issue is already fixed in the latest releases or the
latest code in the repository.

3.2.3 Submitting patches

If there is not an open issue for what you want to submit, prefer opening one for discussion before working on a PR.
You can work on any issue that doesn’t have an open PR linked to it or a maintainer assigned to it. These show up in
the sidebar. No need to ask if you can work on an issue that interests you.

Include the following in your patch:

• Include tests if your patch adds or changes code. Make sure the test fails without your patch.

• Update any relevant docs pages and docstrings.

First time setup

• Download and install the latest version of git.

• Configure git with your username and email.

$ git config --global user.name 'your name'
$ git config --global user.email 'your email'

• Make sure you have a GitHub account.

• Fork Pymem to your GitHub account by clicking the Fork button.

• Clone the main repository locally.

$ git clone https://github.com/srounet/pymem
$ cd pymem

• Add your fork as a remote to push your work to. Replace {username} with your username. This names the
remote “fork”, the default Pymem remote is “origin”.

git remote add fork https://github.com/{username}/pymem

• Create a virtualenv.

$ python3 -m venv env
$. env/bin/activate

On Windows, activating is different.

> env\Scripts\activate

50 Chapter 3. Additional Notes

https://stackoverflow.com/help/minimal-reproducible-example
https://git-scm.com/downloads
https://help.github.com/en/articles/setting-your-username-in-git
https://help.github.com/en/articles/setting-your-commit-email-address-in-git
https://github.com/join
https://github.com/srounet/pymem/fork
https://help.github.com/en/articles/fork-a-repo#step-2-create-a-local-clone-of-your-fork

pymem Documentation, Release alpha

• Install Pymem in editable mode with development dependencies.

$ pip install -e .

Start coding

• Create a branch to identify the issue you would like to work on. If you’re submitting a bug or documentation fix,
branch off of the latest “.x” branch.

$ git fetch origin
$ git checkout -b your-branch-name origin/1.1.x

If you’re submitting a feature addition or change, branch off of the “master” branch.

$ git fetch origin
$ git checkout -b your-branch-name origin/master

• Using your favorite editor, make your changes, committing as you go.

• Include tests that cover any code changes you make. Make sure the test fails without your patch. Run the tests as
described below.

• Push your commits to your fork on GitHub and create a pull request. Link to the issue being addressed with
fixes #123 in the pull request.

$ git push --set-upstream fork your-branch-name

Running the tests

Run the basic test suite with pytest.

$ python -m pytest

This runs the tests for the current environment, which is usually sufficient. CI will run the full suite when you submit
your pull request.

Running test coverage

Generating a report of lines that do not have test coverage can indicate where to start contributing. Run pytest using
coverage and generate a report.

$ pip install -r requirements-test.txt
$ python -m pytest --cov=pymem

3.2. How to contribute to Pymem 51

https://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes
https://help.github.com/en/articles/creating-a-pull-request

pymem Documentation, Release alpha

Building the docs

Build the docs in the docs directory using Sphinx.

$ cd docs/source
$ make clean
$ make html

Open _build/html/index.html in your browser to view the docs.

Read more about Sphinx.

52 Chapter 3. Additional Notes

https://www.sphinx-doc.org/en/stable/

PYTHON MODULE INDEX

p
pymem, 15
pymem.exception, 47
pymem.memory, 34
pymem.pattern, 29
pymem.process, 30
pymem.ptypes, 33
pymem.ressources.structure, 26
pymem.thread, 34

53

pymem Documentation, Release alpha

54 Python Module Index

INDEX

A
allocate() (pymem.Pymem method), 15
allocate_memory() (in module pymem.memory), 34

B
base_address (pymem.Pymem property), 15
base_module() (in module pymem.process), 30

C
check_wow64() (pymem.Pymem method), 16
CLIENT_ID (class in pymem.ressources.structure), 26
close_handle() (in module pymem.process), 30
close_process() (pymem.Pymem method), 16
CouldNotOpenProcess, 47
cvalue (pymem.ptypes.RemotePointer property), 33

D
DELETE (pymem.ressources.structure.PROCESS at-

tribute), 27

E
EntryPoint (pymem.ressources.structure.MODULEINFO

attribute), 27
enum_process_module() (in module pymem.process),

30
enum_process_thread() (in module pymem.process),

31
EnumProcessModuleEX (class in

pymem.ressources.structure), 26

F
FILETIME (class in pymem.ressources.structure), 26
FLOATING_SAVE_AREA (class in

pymem.ressources.structure), 26
free() (pymem.Pymem method), 16
free_memory() (in module pymem.memory), 34

G
get_luid() (in module pymem.process), 31
get_process_token() (in module pymem.process), 31
get_python_dll() (in module pymem.process), 31

I
inject_dll() (in module pymem.process), 31
inject_python_interpreter() (pymem.Pymem

method), 16
inject_python_shellcode() (pymem.Pymem

method), 16
is_64_bit() (in module pymem.process), 31

L
list_modules() (pymem.Pymem method), 16
LIST_MODULES_32BIT (pymem.ressources.structure.EnumProcessModuleEX

attribute), 26
LIST_MODULES_64BIT (pymem.ressources.structure.EnumProcessModuleEX

attribute), 26
LIST_MODULES_ALL (pymem.ressources.structure.EnumProcessModuleEX

attribute), 26
LIST_MODULES_DEFAULT

(pymem.ressources.structure.EnumProcessModuleEX
attribute), 26

list_processes() (in module pymem.process), 31
lpBaseOfDll (pymem.ressources.structure.MODULEINFO

attribute), 27
LPMODULEENTRY32 (in module

pymem.ressources.structure), 26
LPSECURITY_ATTRIBUTES (in module

pymem.ressources.structure), 26
LUID (class in pymem.ressources.structure), 26
LUID_AND_ATTRIBUTES (class in

pymem.ressources.structure), 26

M
main_thread (pymem.Pymem property), 16
main_thread_id (pymem.Pymem property), 16
MEM_DECOMMIT (pymem.ressources.structure.MEMORY_STATE

attribute), 26
MEM_FREE (pymem.ressources.structure.MEMORY_STATE

attribute), 26
MEM_IMAGE (pymem.ressources.structure.MEMORY_TYPES

attribute), 27
MEM_MAPPED (pymem.ressources.structure.MEMORY_TYPES

attribute), 27

55

pymem Documentation, Release alpha

MEM_PRIVATE (pymem.ressources.structure.MEMORY_TYPES
attribute), 27

MEM_RELEASE (pymem.ressources.structure.MEMORY_STATE
attribute), 26

MEM_RESERVE (pymem.ressources.structure.MEMORY_STATE
attribute), 27

MEMORY_BASIC_INFORMATION (in module
pymem.ressources.structure), 26

MEMORY_BASIC_INFORMATION32 (class in
pymem.ressources.structure), 26

MEMORY_BASIC_INFORMATION64 (class in
pymem.ressources.structure), 26

MEMORY_PROTECTION (class in
pymem.ressources.structure), 26

MEMORY_STATE (class in pymem.ressources.structure), 26
MEMORY_TYPES (class in pymem.ressources.structure), 27
MemoryReadError, 47
MemoryWriteError, 47
module

pymem, 15
pymem.exception, 47
pymem.memory, 34
pymem.pattern, 29
pymem.process, 30
pymem.ptypes, 33
pymem.ressources.structure, 26
pymem.thread, 34

module_from_name() (in module pymem.process), 31
ModuleEntry32 (class in pymem.ressources.structure),

27
MODULEINFO (class in pymem.ressources.structure), 27

N
NT_TIB (class in pymem.ressources.structure), 27

O
open() (in module pymem.process), 32
open_main_thread() (in module pymem.process), 32
open_process_from_id() (pymem.Pymem method), 16
open_process_from_name() (pymem.Pymem method),

16
open_thread() (in module pymem.process), 32

P
PAGE_EXECUTE_READWRITE

(pymem.ressources.structure.MEMORY_PROTECTION
attribute), 26

pattern_scan_all() (in module pymem.pattern), 29
pattern_scan_all() (pymem.Pymem method), 17
pattern_scan_module() (in module pymem.pattern),

29
pattern_scan_module() (pymem.Pymem method), 17
PROCESS (class in pymem.ressources.structure), 27

PROCESS_ALL_ACCESS (pymem.ressources.structure.PROCESS
attribute), 27

process_base (pymem.Pymem property), 17
PROCESS_CREATE_PROCESS

(pymem.ressources.structure.PROCESS at-
tribute), 27

PROCESS_CREATE_THREAD
(pymem.ressources.structure.PROCESS at-
tribute), 27

PROCESS_DUP_HANDLE (pymem.ressources.structure.PROCESS
attribute), 27

process_from_id() (in module pymem.process), 32
process_from_name() (in module pymem.process), 32
PROCESS_SET_INFORMATION

(pymem.ressources.structure.PROCESS at-
tribute), 27

PROCESS_SET_QUOTA (pymem.ressources.structure.PROCESS
attribute), 27

PROCESS_SUSPEND_RESUME
(pymem.ressources.structure.PROCESS at-
tribute), 27

PROCESS_TERMINATE (pymem.ressources.structure.PROCESS
attribute), 27

PROCESS_VM_OPERATION
(pymem.ressources.structure.PROCESS at-
tribute), 28

PROCESS_VM_READ (pymem.ressources.structure.PROCESS
attribute), 28

PROCESS_VM_WRITE (pymem.ressources.structure.PROCESS
attribute), 28

ProcessEntry32 (class in pymem.ressources.structure),
28

ProcessError, 47
ProcessNotFound, 47
PTOKEN_PRIVILEGES (in module

pymem.ressources.structure), 28
pymem

module, 15
Pymem (class in pymem), 15
pymem.exception

module, 47
pymem.memory

module, 34
pymem.pattern

module, 29
pymem.process

module, 30
pymem.ptypes

module, 33
pymem.ressources.structure

module, 26
pymem.thread

module, 34
PymemAlignmentError, 47

56 Index

pymem Documentation, Release alpha

PymemError, 47
PymemMemoryError, 47
PymemTypeError, 47

R
read_bool() (in module pymem.memory), 34
read_bool() (pymem.Pymem method), 17
read_bytes() (in module pymem.memory), 35
read_bytes() (pymem.Pymem method), 18
read_char() (in module pymem.memory), 35
read_char() (pymem.Pymem method), 18
READ_CONTROL (pymem.ressources.structure.PROCESS

attribute), 28
read_ctype() (in module pymem.memory), 35
read_ctype() (pymem.Pymem method), 18
read_double() (in module pymem.memory), 36
read_double() (pymem.Pymem method), 18
read_float() (in module pymem.memory), 36
read_float() (pymem.Pymem method), 19
read_int() (in module pymem.memory), 37
read_int() (pymem.Pymem method), 19
read_long() (in module pymem.memory), 37
read_long() (pymem.Pymem method), 19
read_longlong() (in module pymem.memory), 37
read_longlong() (pymem.Pymem method), 19
read_short() (in module pymem.memory), 38
read_short() (pymem.Pymem method), 20
read_string() (in module pymem.memory), 38
read_string() (pymem.Pymem method), 20
read_uchar() (in module pymem.memory), 38
read_uchar() (pymem.Pymem method), 20
read_uint() (in module pymem.memory), 39
read_uint() (pymem.Pymem method), 20
read_ulong() (in module pymem.memory), 39
read_ulong() (pymem.Pymem method), 21
read_ulonglong() (in module pymem.memory), 39
read_ulonglong() (pymem.Pymem method), 21
read_ushort() (in module pymem.memory), 40
read_ushort() (pymem.Pymem method), 21
RemotePointer (class in pymem.ptypes), 33

S
scan_pattern_page() (in module pymem.pattern), 29
SE_TOKEN_PRIVILEGE (class in

pymem.ressources.structure), 28
SECURITY_ATTRIBUTES (class in

pymem.ressources.structure), 28
set_debug_privilege() (in module pymem.process),

33
SizeOfImage (pymem.ressources.structure.MODULEINFO

attribute), 27
SMALL_TEB (class in pymem.ressources.structure), 28

STANDARD_RIGHTS_REQUIRED
(pymem.ressources.structure.PROCESS at-
tribute), 28

start_thread() (pymem.Pymem method), 21
SYNCHRONIZE (pymem.ressources.structure.PROCESS

attribute), 28
SYSTEM_INFO (class in pymem.ressources.structure), 28

T
Thread (class in pymem.thread), 34
THREAD_BASIC_INFORMATION (class in

pymem.ressources.structure), 28
ThreadContext (class in pymem.ressources.structure),

28
ThreadEntry32 (class in pymem.ressources.structure),

29
TIB_UNION (class in pymem.ressources.structure), 28
TOKEN (class in pymem.ressources.structure), 28
TOKEN_PRIVILEGES (class in

pymem.ressources.structure), 28

V
value (pymem.ptypes.RemotePointer property), 33
virtual_query() (in module pymem.memory), 40

W
WinAPIError, 47
with_traceback() (pymem.exception.CouldNotOpenProcess

method), 47
with_traceback() (pymem.exception.MemoryReadError

method), 47
with_traceback() (pymem.exception.MemoryWriteError

method), 47
with_traceback() (pymem.exception.ProcessError

method), 47
with_traceback() (pymem.exception.ProcessNotFound

method), 47
with_traceback() (pymem.exception.PymemAlignmentError

method), 47
with_traceback() (pymem.exception.PymemError

method), 47
with_traceback() (pymem.exception.PymemMemoryError

method), 47
with_traceback() (pymem.exception.PymemTypeError

method), 47
with_traceback() (pymem.exception.WinAPIError

method), 47
write_bool() (in module pymem.memory), 40
write_bool() (pymem.Pymem method), 22
write_bytes() (in module pymem.memory), 41
write_bytes() (pymem.Pymem method), 22
write_char() (in module pymem.memory), 41
write_char() (pymem.Pymem method), 22

Index 57

pymem Documentation, Release alpha

write_ctype() (in module pymem.memory), 42
write_ctype() (pymem.Pymem method), 22
WRITE_DAC (pymem.ressources.structure.PROCESS at-

tribute), 28
write_double() (in module pymem.memory), 42
write_double() (pymem.Pymem method), 23
write_float() (in module pymem.memory), 42
write_float() (pymem.Pymem method), 23
write_int() (in module pymem.memory), 43
write_int() (pymem.Pymem method), 23
write_long() (in module pymem.memory), 43
write_long() (pymem.Pymem method), 23
write_longlong() (in module pymem.memory), 44
write_longlong() (pymem.Pymem method), 24
WRITE_OWNER (pymem.ressources.structure.PROCESS

attribute), 28
write_short() (in module pymem.memory), 44
write_short() (pymem.Pymem method), 24
write_string() (in module pymem.memory), 44
write_string() (pymem.Pymem method), 24
write_uchar() (in module pymem.memory), 45
write_uchar() (pymem.Pymem method), 24
write_uint() (in module pymem.memory), 45
write_uint() (pymem.Pymem method), 25
write_ulong() (in module pymem.memory), 45
write_ulong() (pymem.Pymem method), 25
write_ulonglong() (in module pymem.memory), 46
write_ulonglong() (pymem.Pymem method), 25
write_ushort() (in module pymem.memory), 46
write_ushort() (pymem.Pymem method), 25

58 Index

	User’s Guide
	Foreword
	Why Pymem ?
	Pymem history
	Why and when using Pymem

	Installation
	Path
	Virtual environments
	Create an environment
	Activate the environment

	Install Pymem
	Extra Packages

	Quickstart
	A Minimal Application

	Tutorials
	Listing process modules
	Injecting a python interpreter into any process

	Examples from the community
	External glow ESP for CS:GO
	Warning
	Snippet

	AssaultCube External ESP (Pyray, Pymem)
	Warning
	Image

	CS:GO Esp
	Warning
	Snippet
	Screenshot

	No flash cheat for CS:GO
	Warning
	Snippet

	Auto bunny hopper for CS:GO
	Warning
	Snippet

	Trigger bot for CS:GO
	Warning
	Snippet

	Common issues

	API Reference
	API
	Pymem
	Structures
	Pattern
	Process
	Ptypes
	Thread
	Memory
	Exceptions

	Additional Notes
	License
	How to contribute to Pymem
	Support questions
	Reporting issues
	Submitting patches
	First time setup
	Start coding
	Running the tests
	Running test coverage
	Building the docs

	Python Module Index
	Index

